期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于连清样地数据的全国杉木人工林平均木树高-胸径模型 被引量:3
1
作者 牛思圆 刘鹏举 +2 位作者 雷相东 任怡 高影 《林业科学研究》 CSCD 北大核心 2023年第1期117-123,共7页
[目的]基于我国森林资源连续清查(简称“连清”)样地数据,分省区研建全国杉木人工林平均木树高-胸径的最优基础模型,以期为全国各省区杉木人工林的树高预测提供基础模型。[方法]研究范围为杉木人工林分布的15个省份,数据来自第六次、第... [目的]基于我国森林资源连续清查(简称“连清”)样地数据,分省区研建全国杉木人工林平均木树高-胸径的最优基础模型,以期为全国各省区杉木人工林的树高预测提供基础模型。[方法]研究范围为杉木人工林分布的15个省份,数据来自第六次、第七次连清样地数据的树高调查表,总样本数为23239个。选取18种基础生长方程作为候选模型,分别拟合各省区杉木平均木树高与胸径的关系,根据模型的决定系数(R^(2))、平均绝对误差(MAE)、平均相对误差(MRE)、均方根误差(RMSE)和平均预估误差(MPE),并结合模型残差分布图,确定各省区最优模型,同时采用5折法验证各省区最优模型的预测能力,最终决定各省区最优树高-胸径模型。[结果]15个省区的杉木最优树高-胸径模型并不相同,四川、云南、重庆、陕西、浙江、江西、湖南、广西的最优模型为模型18(Mitscherlich方程),江苏、安徽、河南和福建的最优模型为模型16(Hossfeld方程),广东、湖北、贵州的最优模型分别为模型10(双曲线方程)、模型11(Logistic方程)和模型13(Gompertz方程),R2分布在0.602~0.807之间,MAE分布在0.94~1.53 m之间,MRE分布在-2.93%~-4.72%之间,RMSE分布在1.23~2.00 m之间,MPE分布在0.50%~2.77%之间。模型拟合效果较好,满足精度要求,且参数具有生物学意义,可作为全国各省区杉木人工林平均木树高-胸径基础模型。[结论]本研究构建全国杉木人工林分布的15个省区的最优树高-胸径基础模型,能较好的模拟各省区的杉木平均木树高随胸径的变化规律,可以作为全国各省区基本的杉木人工林平均木树高-胸径模型,为各省区杉木人工林的树高预测提供依据。 展开更多
关键词 清样数据 杉木 树高-胸径模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部