推导了传统全球卫星导航定位系统(GNSS)测定垂线偏差(Deflection of the Vertical, DOV)形式误差的表达式;提出一种可用以解算并置站DOV的小网参数转换法.利用乌鲁木齐南山多技术并置站控制网观测信息,开展了算法验证,并对该站内多个地...推导了传统全球卫星导航定位系统(GNSS)测定垂线偏差(Deflection of the Vertical, DOV)形式误差的表达式;提出一种可用以解算并置站DOV的小网参数转换法.利用乌鲁木齐南山多技术并置站控制网观测信息,开展了算法验证,并对该站内多个地点DOV开展了实测.结果表明,高精度的小网DOV仅由点位观测精度最高、覆盖面积最广的3个站点决定.个别精度较差的点会为DOV的测定值带来较大的不确定性;采用小网转换法所解算的DOV与实测值间的一致性分别为-2.3″±4.3″(子午分量)和0.2″±4.6″(卯酉分量);小网转换求取DOV的方法在精度上与经典的GNSS水准方法相当,但步骤更加简便.鉴于多技术并置站会不定期地开展本地测量,可利用该方法实现多技术并置站DOV的零成本长期监测.展开更多
针对连线干涉测量体制(Connected Elements Interferometry,CEI)的特点,首先详细分析了CEI数,推导了电离层误差和对流层误差等信道误差的表达式;然后采用极限分析的方法,得到了CEI角度测量的最佳精度,并给出了基线长度设置建议。当基线...针对连线干涉测量体制(Connected Elements Interferometry,CEI)的特点,首先详细分析了CEI数,推导了电离层误差和对流层误差等信道误差的表达式;然后采用极限分析的方法,得到了CEI角度测量的最佳精度,并给出了基线长度设置建议。当基线较短时,时钟同步误差最大;当基线增长时,电离层误差等信道误差是主要误差因素。综合考虑误差因素和成本问题,基线长度设置为10km左右比较合适。展开更多
文摘推导了传统全球卫星导航定位系统(GNSS)测定垂线偏差(Deflection of the Vertical, DOV)形式误差的表达式;提出一种可用以解算并置站DOV的小网参数转换法.利用乌鲁木齐南山多技术并置站控制网观测信息,开展了算法验证,并对该站内多个地点DOV开展了实测.结果表明,高精度的小网DOV仅由点位观测精度最高、覆盖面积最广的3个站点决定.个别精度较差的点会为DOV的测定值带来较大的不确定性;采用小网转换法所解算的DOV与实测值间的一致性分别为-2.3″±4.3″(子午分量)和0.2″±4.6″(卯酉分量);小网转换求取DOV的方法在精度上与经典的GNSS水准方法相当,但步骤更加简便.鉴于多技术并置站会不定期地开展本地测量,可利用该方法实现多技术并置站DOV的零成本长期监测.
文摘针对连线干涉测量体制(Connected Elements Interferometry,CEI)的特点,首先详细分析了CEI数,推导了电离层误差和对流层误差等信道误差的表达式;然后采用极限分析的方法,得到了CEI角度测量的最佳精度,并给出了基线长度设置建议。当基线较短时,时钟同步误差最大;当基线增长时,电离层误差等信道误差是主要误差因素。综合考虑误差因素和成本问题,基线长度设置为10km左右比较合适。