期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Stacking集成学习的远程资源传输负荷预测
1
作者
商娟叶
《信息技术》
2024年第6期94-99,104,共7页
传统电网远程资源传输负荷预测方法忽略了对资源的集成训练,导致电网负荷预测结果与实际值偏差较大。为此,提出基于Stacking集成学习的远程资源传输负荷预测方法。构建Stacking集成学习模型,同时通过长短时记忆网络构建Stacking-LSTM网...
传统电网远程资源传输负荷预测方法忽略了对资源的集成训练,导致电网负荷预测结果与实际值偏差较大。为此,提出基于Stacking集成学习的远程资源传输负荷预测方法。构建Stacking集成学习模型,同时通过长短时记忆网络构建Stacking-LSTM网络混合模型,利用时间滑动窗口构建影响因素数据特征图,并将其输入网络混合模型,利用Stacking基础学习训练层实现训练,并将训练结果输入LSTM网络层,完成电网远程资源传输负荷预测。实验结果表明:该方法的网络收敛速度较快,获取特征的贡献度较高,且负荷预测结果接近实际值,可以较好地跟踪负荷变化情况。
展开更多
关键词
Stacking集成学习
远程
资源
传输
负荷预测
长短时记忆
滑动窗口
下载PDF
职称材料
题名
基于Stacking集成学习的远程资源传输负荷预测
1
作者
商娟叶
机构
西安外事学院工学院
出处
《信息技术》
2024年第6期94-99,104,共7页
基金
2021年度陕西省教育科学“十四五”规划课题(SGH-21Y0307)
2021年度陕西本科和高等继续教育教学改革研究项目(21ZY015)。
文摘
传统电网远程资源传输负荷预测方法忽略了对资源的集成训练,导致电网负荷预测结果与实际值偏差较大。为此,提出基于Stacking集成学习的远程资源传输负荷预测方法。构建Stacking集成学习模型,同时通过长短时记忆网络构建Stacking-LSTM网络混合模型,利用时间滑动窗口构建影响因素数据特征图,并将其输入网络混合模型,利用Stacking基础学习训练层实现训练,并将训练结果输入LSTM网络层,完成电网远程资源传输负荷预测。实验结果表明:该方法的网络收敛速度较快,获取特征的贡献度较高,且负荷预测结果接近实际值,可以较好地跟踪负荷变化情况。
关键词
Stacking集成学习
远程
资源
传输
负荷预测
长短时记忆
滑动窗口
Keywords
Stacking ensemble learning
remote resource transmission
load prediction
long short-term memory
sliding window
分类号
TM715 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Stacking集成学习的远程资源传输负荷预测
商娟叶
《信息技术》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部