期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
近邻概率距离在旋转机械故障集分类中的应用方法 被引量:12
1
作者 李霁蒲 赵荣珍 《振动与冲击》 EI CSCD 北大核心 2018年第11期48-54,共7页
针对多种故障类型的特征属性相互交叉导致故障难以辨识的问题,提出一种考虑相邻点之间成为近邻点概率的新度量函数。将新提出的近邻概率距离(Nearby Probability Distance,NPD)应用于局部保持投影算法(Locality Preserving Projection,L... 针对多种故障类型的特征属性相互交叉导致故障难以辨识的问题,提出一种考虑相邻点之间成为近邻点概率的新度量函数。将新提出的近邻概率距离(Nearby Probability Distance,NPD)应用于局部保持投影算法(Locality Preserving Projection,LPP)与K-近邻(K-Nearest Neighbor,KNN)分类器中,提出基于近邻概率距离的局部保持投影算法(Nearby Probability Distance Locality Preserving Projection,NPDLPP)与基于近邻概率距离的K-近邻(Nearby Probability Distance K-Nearest Neighbor,NPDKNN)分类器;首先通过时域、频域特征提取方法,将振动信号转化为高维特征数据集,然后通过NPDLPP将高维数据集降维到低维空间,最后将降维得到的低维敏感特征集输入到NPDKNN中进行模式识别;用一个双跨度转子系统的振动信号集合进行验证,证明了所提出的降维算法效果明显,它能够达到各个故障类型更好分离。研究表明,新提出的近邻概率距离较传统的欧式距离测度更能最小化类内散度,最大化类间分离度。 展开更多
关键词 局部保持投影 近邻概率距离 K近邻分类器 距离度量
下载PDF
基于流行-IMF奇异值熵的转子故障特征提取方法 被引量:1
2
作者 孙泽金 赵荣珍 《振动.测试与诊断》 EI CSCD 北大核心 2020年第6期1204-1211,1238,共9页
针对转子振动信号的非平稳性以及微弱故障特征难以提取的问题,提出一种基于集合经验模式分解(ensemble empirical mode decomposition,简称EEMD)的奇异值熵和流形学习算法相结合的故障特征提取方法。首先,对原始振动信号进行EEMD分解,... 针对转子振动信号的非平稳性以及微弱故障特征难以提取的问题,提出一种基于集合经验模式分解(ensemble empirical mode decomposition,简称EEMD)的奇异值熵和流形学习算法相结合的故障特征提取方法。首先,对原始振动信号进行EEMD分解,得到若干本征模态函数(intrinsic mode function,简称IMF)分量,根据峭度-欧式距离评价指标选取故障信息丰富的敏感分量,组成初始特征向量,求其奇异值熵;其次,利用近邻概率距离拉普拉斯特征映射算法(nearby probability distance Laplacian eigenmap,简称NPDLE)对奇异值熵组成的特征矩阵进行降维处理;最后,将得到的低维特征子集输入到K-近邻(K-nearest neighbor,简称KNN)中进行模式辨识。用一个双跨度转子实验台数据集和Iris仿真数据集对所提方法进行了验证,结果表明,IMF奇异值熵和NPDLE相结合的方法可以有效地实现转子故障特征提取,提高了故障辨识的准确性。 展开更多
关键词 特征提取 集合经验模态分解 本征模态函数 奇异值熵 近邻概率距离拉普拉斯特征映射算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部