文章针对特高压变电站的运行安全管理需求,提出一种基于近场通信(Near Field Communication,NFC)技术的创新解决方案。通过在关键设备上部署NFC标签,利用NFC读写器实现数据采集和状态监测,并结合大数据分析和机器学习算法,构建了一套集...文章针对特高压变电站的运行安全管理需求,提出一种基于近场通信(Near Field Communication,NFC)技术的创新解决方案。通过在关键设备上部署NFC标签,利用NFC读写器实现数据采集和状态监测,并结合大数据分析和机器学习算法,构建了一套集实时监控、故障诊断、安全预警等功能于一体的智能管理系统。仿真实验结果表明,该系统能够有效提高数据采集率、异常检测率及诊断准确率,缩短响应时间,为保障特高压变电站的安全运行提供可靠的技术支撑。展开更多
Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work w...Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains.展开更多
文摘文章针对特高压变电站的运行安全管理需求,提出一种基于近场通信(Near Field Communication,NFC)技术的创新解决方案。通过在关键设备上部署NFC标签,利用NFC读写器实现数据采集和状态监测,并结合大数据分析和机器学习算法,构建了一套集实时监控、故障诊断、安全预警等功能于一体的智能管理系统。仿真实验结果表明,该系统能够有效提高数据采集率、异常检测率及诊断准确率,缩短响应时间,为保障特高压变电站的安全运行提供可靠的技术支撑。
基金Projects(51075401,U1334205)supported by the National Natural Science Foundation of ChinaProject supported by the Scholarship Award for Excellent Innovative Doctoral Student granted by Central South University of ChinaProject(132014)supported by the Fok Ying Tong Education Foundation,China
文摘Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains.