期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度时空特征融合的多通道运动想象EEG解码方法
被引量:
6
1
作者
杨俊
马正敏
+2 位作者
沈韬
陈壮飞
宋耀莲
《电子与信息学报》
EI
CSCD
北大核心
2021年第1期196-203,共8页
脑电(EEG)是一种在临床上广泛应用的脑信息记录形式,其反映了脑活动中神经细胞放电产生的电场变化情况。脑电广泛应用于脑-机接口(BCI)系统。然而,研究表明脑电信息空间分辨率较低,这种缺陷可以综合分析多通道电极的脑电数据来弥补。为...
脑电(EEG)是一种在临床上广泛应用的脑信息记录形式,其反映了脑活动中神经细胞放电产生的电场变化情况。脑电广泛应用于脑-机接口(BCI)系统。然而,研究表明脑电信息空间分辨率较低,这种缺陷可以综合分析多通道电极的脑电数据来弥补。为了从多通道数据中高效地获取到与运动想象任务相关的辨识特征,该文提出一种针对多通道脑电信息的卷积神经网络(MC-CNN)解码方法,先对预先选取好的多通道数据预处理后送入2维卷积神经网络(CNN)进行时间-空间特征提取,然后利用自动编码(AE)器把这些特征映射为具有辨识度的特征子空间,最后指导识别网络进行分类识别。实验结果表明,该文所提多通道空间特征提取和构建方法在运动想象脑电任务识别性能和效率上都具有较大优势。
展开更多
关键词
运动
想象
脑
电
解码
多通道特征融合
子空间特征
下载PDF
职称材料
题名
基于深度时空特征融合的多通道运动想象EEG解码方法
被引量:
6
1
作者
杨俊
马正敏
沈韬
陈壮飞
宋耀莲
机构
昆明理工大学信息工程与自动化学院
昆明理工大学医学院
出处
《电子与信息学报》
EI
CSCD
北大核心
2021年第1期196-203,共8页
基金
国家自然科学基金地区基金(31760281)
云南省2020年博士后科研基金
昆明理工大学引进人才科研启动基金(KKSY201903028)。
文摘
脑电(EEG)是一种在临床上广泛应用的脑信息记录形式,其反映了脑活动中神经细胞放电产生的电场变化情况。脑电广泛应用于脑-机接口(BCI)系统。然而,研究表明脑电信息空间分辨率较低,这种缺陷可以综合分析多通道电极的脑电数据来弥补。为了从多通道数据中高效地获取到与运动想象任务相关的辨识特征,该文提出一种针对多通道脑电信息的卷积神经网络(MC-CNN)解码方法,先对预先选取好的多通道数据预处理后送入2维卷积神经网络(CNN)进行时间-空间特征提取,然后利用自动编码(AE)器把这些特征映射为具有辨识度的特征子空间,最后指导识别网络进行分类识别。实验结果表明,该文所提多通道空间特征提取和构建方法在运动想象脑电任务识别性能和效率上都具有较大优势。
关键词
运动
想象
脑
电
解码
多通道特征融合
子空间特征
Keywords
Decoding of MI-EEG
Multi-channel feature fusion
Subspace features
分类号
TN911.7 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度时空特征融合的多通道运动想象EEG解码方法
杨俊
马正敏
沈韬
陈壮飞
宋耀莲
《电子与信息学报》
EI
CSCD
北大核心
2021
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部