期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于局部表征的面部表情识别算法
被引量:
6
1
作者
陈昌川
王海宁
+4 位作者
黄炼
黄涛
李连杰
黄向康
代少升
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2021年第5期100-109,共10页
表情是人类内心情感变化的重要体现。当前表情识别方法通常依赖面部全局特征进行处理,忽略局部特征提取。心理学家指出,不同面部表情对应不同的局部肌肉运动区域,以此为动机,提出一种基于局部表征的表情识别算法,简称EAU-CNN。为提取面...
表情是人类内心情感变化的重要体现。当前表情识别方法通常依赖面部全局特征进行处理,忽略局部特征提取。心理学家指出,不同面部表情对应不同的局部肌肉运动区域,以此为动机,提出一种基于局部表征的表情识别算法,简称EAU-CNN。为提取面部的局部特征,该文首先根据获取的人脸68个特征点将整体面部图像划分成43个子区域,随后选择肌肉运动区域与面部显著器官所覆盖的8个局部候选区域作为卷积神经网络的输入。为均衡局部候选区域的特征,EAU-CNN采用8个并行的特征提取分支,每个分支支配不同维全连接层。分支的输出按照注意力自适应地连接,以突出不同局部候选区域的重要程度。最后经Softmax函数,将表情分为中性、愤怒、厌恶、惊讶、高兴、悲伤和恐惧七类。该文在CK+、JAFFE、自定义大型FED数据集上对算法进行了评估实验,所提算法平均准确率分别为99.85%、96.61%、98.29%。该评价指标超过S-Patches算法6.01%、10.17%、6.09%,结果表明局部表征能够提升表情识别性能。
展开更多
关键词
表情识别
运动
单元
分区
卷积神经网络
损失函数
下载PDF
职称材料
题名
一种基于局部表征的面部表情识别算法
被引量:
6
1
作者
陈昌川
王海宁
黄炼
黄涛
李连杰
黄向康
代少升
机构
重庆邮电大学通信与信息工程学院
山东大学信息科学与工程学院
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2021年第5期100-109,共10页
基金
重庆市研究生教育教学改革研究重点项目(yjg192019)
国家自然科学基金(61671095,61702065,61701067,61771085)
企业项目驾驶员健康监测(E021E2021008)。
文摘
表情是人类内心情感变化的重要体现。当前表情识别方法通常依赖面部全局特征进行处理,忽略局部特征提取。心理学家指出,不同面部表情对应不同的局部肌肉运动区域,以此为动机,提出一种基于局部表征的表情识别算法,简称EAU-CNN。为提取面部的局部特征,该文首先根据获取的人脸68个特征点将整体面部图像划分成43个子区域,随后选择肌肉运动区域与面部显著器官所覆盖的8个局部候选区域作为卷积神经网络的输入。为均衡局部候选区域的特征,EAU-CNN采用8个并行的特征提取分支,每个分支支配不同维全连接层。分支的输出按照注意力自适应地连接,以突出不同局部候选区域的重要程度。最后经Softmax函数,将表情分为中性、愤怒、厌恶、惊讶、高兴、悲伤和恐惧七类。该文在CK+、JAFFE、自定义大型FED数据集上对算法进行了评估实验,所提算法平均准确率分别为99.85%、96.61%、98.29%。该评价指标超过S-Patches算法6.01%、10.17%、6.09%,结果表明局部表征能够提升表情识别性能。
关键词
表情识别
运动
单元
分区
卷积神经网络
损失函数
Keywords
expression recognition
motion unit partition
convolutional neural network
loss function
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于局部表征的面部表情识别算法
陈昌川
王海宁
黄炼
黄涛
李连杰
黄向康
代少升
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2021
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部