Weather-related geo-hazards are a major concern for both natural slopes and man-made slopes and embankments. Government agencies and private companies are increasingly required to ensure that there is adequate protect...Weather-related geo-hazards are a major concern for both natural slopes and man-made slopes and embankments. Government agencies and private companies are increasingly required to ensure that there is adequate protection of sloping sur- faces in order that interaction with the climate does not produce instability. Superior theoretical formulations and computer tools are now available to address engineering design issues related to the near ground surface soil-atmospheric interactions. An ex- ample is given in this paper that illustrates the consequences of not paying adequate attention to the hazards of slope stability prior to the construction of a highway in South America. On the other hand, examples are given from Hong Kong and China's Mainland where significant benefits are derived from putting in place a hazard slope stability management system. Some results from a hazard management slope stability study related to the railway system in Canada are also reported. The study took advantage of recent research on unsaturated soil behaviour and applied this information to real-time modelling of climatic conditions. The quantification of the water balance at the ground surface, and subsequent infiltration, is used as the primary tool for hazard level assessment. The suggested hazard model can be applied at either specific high risk locations or in a more general, broad-based manner over large areas. A more thorough understanding of unsaturated soil behaviour as it applies to near ground surface soils, along with the numerical computational power of the computer has made it possible for new approaches to be used in slope hazard management engineering.展开更多
The solution of a slope stability problem can be approached by its least upper-bound and maximum lower-bound with high accuracy. The limit equilibrium methods that employ vertical slices imply a lower bound of the fac...The solution of a slope stability problem can be approached by its least upper-bound and maximum lower-bound with high accuracy. The limit equilibrium methods that employ vertical slices imply a lower bound of the factor of safety. It has been successfully extended to the area of active earth pressure analysis that accounts for different input of locations of earth pressure applications. Those methods that employ slices with inclined interfaces give an upper-bound approach to the stability analysis. It enjoys a sound mechanical background and is able to provide accurate solutions of soil plasticity. It has been successfully extended to the area of bearing capacity analysis in which various empirical coefficients are no longer necessary. The 3D upper- and lower-bound methods under this framework have been made possible and show great potential for solving various engineering problems.展开更多
文摘Weather-related geo-hazards are a major concern for both natural slopes and man-made slopes and embankments. Government agencies and private companies are increasingly required to ensure that there is adequate protection of sloping sur- faces in order that interaction with the climate does not produce instability. Superior theoretical formulations and computer tools are now available to address engineering design issues related to the near ground surface soil-atmospheric interactions. An ex- ample is given in this paper that illustrates the consequences of not paying adequate attention to the hazards of slope stability prior to the construction of a highway in South America. On the other hand, examples are given from Hong Kong and China's Mainland where significant benefits are derived from putting in place a hazard slope stability management system. Some results from a hazard management slope stability study related to the railway system in Canada are also reported. The study took advantage of recent research on unsaturated soil behaviour and applied this information to real-time modelling of climatic conditions. The quantification of the water balance at the ground surface, and subsequent infiltration, is used as the primary tool for hazard level assessment. The suggested hazard model can be applied at either specific high risk locations or in a more general, broad-based manner over large areas. A more thorough understanding of unsaturated soil behaviour as it applies to near ground surface soils, along with the numerical computational power of the computer has made it possible for new approaches to be used in slope hazard management engineering.
基金Project (Nos. 50539100,50679035 and 50509027) supported by the National Natural ScienceFoundation of China
文摘The solution of a slope stability problem can be approached by its least upper-bound and maximum lower-bound with high accuracy. The limit equilibrium methods that employ vertical slices imply a lower bound of the factor of safety. It has been successfully extended to the area of active earth pressure analysis that accounts for different input of locations of earth pressure applications. Those methods that employ slices with inclined interfaces give an upper-bound approach to the stability analysis. It enjoys a sound mechanical background and is able to provide accurate solutions of soil plasticity. It has been successfully extended to the area of bearing capacity analysis in which various empirical coefficients are no longer necessary. The 3D upper- and lower-bound methods under this framework have been made possible and show great potential for solving various engineering problems.