综述了输液管系统的各类物理模型及其相应的数学模型,在流体满足基本假设条件下,对于管道内径远远小于管道长度的直管和曲管,详细叙述了梁模型管动力学数学模型的建模过程以及建模方法,针对在水动压力作用下以及管道短而且薄的情形,综...综述了输液管系统的各类物理模型及其相应的数学模型,在流体满足基本假设条件下,对于管道内径远远小于管道长度的直管和曲管,详细叙述了梁模型管动力学数学模型的建模过程以及建模方法,针对在水动压力作用下以及管道短而且薄的情形,综述了壳模型的输液管道的动力学方程。在此基础上,概述了近几年来输液管道的非线性振动、稳定性、分岔与混沌、特别是管道控制的研究现状,并对今后的发展趋势作了分析和预测。综观非线性动力学理论的发展历程可以发现选取研究对象和典型的数学模型是至关重要的。对于低维的非线性系统,常常选用Van der Pol、Duffing、Mathieu、Lorenz等典型系统来进行研究工作的。通过本文可以看出,对于研究高维非线性系统动力学,流诱发输液管的动力学问题是非常典型的模型之一,它有着容易理解的工程背景、包含了梁和壳的振动问题,并且它的数学模型相对简单,然而却能包含非常复杂的非线性动力学现象,同时容易解释数学方法得到的结果易对应到工程中的实际现象。本文希望通过对输液管动力学模型及其非线性动力学和控制研究现状的综述,建立高维非线性动力学的分析模型,以便发展高维非线性动力学的分岔与混沌理论,同时建立相应的控制理论基础。展开更多
文摘综述了输液管系统的各类物理模型及其相应的数学模型,在流体满足基本假设条件下,对于管道内径远远小于管道长度的直管和曲管,详细叙述了梁模型管动力学数学模型的建模过程以及建模方法,针对在水动压力作用下以及管道短而且薄的情形,综述了壳模型的输液管道的动力学方程。在此基础上,概述了近几年来输液管道的非线性振动、稳定性、分岔与混沌、特别是管道控制的研究现状,并对今后的发展趋势作了分析和预测。综观非线性动力学理论的发展历程可以发现选取研究对象和典型的数学模型是至关重要的。对于低维的非线性系统,常常选用Van der Pol、Duffing、Mathieu、Lorenz等典型系统来进行研究工作的。通过本文可以看出,对于研究高维非线性系统动力学,流诱发输液管的动力学问题是非常典型的模型之一,它有着容易理解的工程背景、包含了梁和壳的振动问题,并且它的数学模型相对简单,然而却能包含非常复杂的非线性动力学现象,同时容易解释数学方法得到的结果易对应到工程中的实际现象。本文希望通过对输液管动力学模型及其非线性动力学和控制研究现状的综述,建立高维非线性动力学的分析模型,以便发展高维非线性动力学的分岔与混沌理论,同时建立相应的控制理论基础。