期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于轻量化VGG16和BCBAM的电力设备故障红外图像诊断识别
被引量:
10
1
作者
于晓
庄光耀
《河南科技学院学报(自然科学版)》
2023年第6期60-69,共10页
由于电力设备的各种缺陷会影响电网的正常运转,严重的缺陷甚至会给生产和生活带来重大损失,因此快速准确地识别电力设备故障具有重要意义.红外图像特征对具有发热特征的电力设备缺陷具有较好的表达能力.使用基于深度学习算法的缺陷目标...
由于电力设备的各种缺陷会影响电网的正常运转,严重的缺陷甚至会给生产和生活带来重大损失,因此快速准确地识别电力设备故障具有重要意义.红外图像特征对具有发热特征的电力设备缺陷具有较好的表达能力.使用基于深度学习算法的缺陷目标识别时,借助CNN网络可以提高缺陷故障特征的学习和提取能力,从而具有更好的泛化性能.据此,研究提出了基于改进VGG模型的故障诊断识别算法,算法通过优化全连接层,减少网络的计算量,同时将BCBAM注意力机制嵌套到网络模型中,从而提高算法故障诊断识别准确率.实验数据表明,该模型具有准确的故障识别能力,在准确率评价指标上优于Faster-RCNN、Resnet50以及传统VGG16等模型,从而验证了算法诊断识别故障的准确度.
展开更多
关键词
故障识别
深度学习网络
轻量化
vgg
模型
注意力机制
下载PDF
职称材料
题名
基于轻量化VGG16和BCBAM的电力设备故障红外图像诊断识别
被引量:
10
1
作者
于晓
庄光耀
机构
天津理工大学电气工程与自动化学院
出处
《河南科技学院学报(自然科学版)》
2023年第6期60-69,共10页
基金
国家自然科学基金(61502340)
天津市自然科学基金(18JCQNJC01000)
+1 种基金
天津理工大学教学基金(YB20-05)
天津市教委科研计划(2018KJ133)。
文摘
由于电力设备的各种缺陷会影响电网的正常运转,严重的缺陷甚至会给生产和生活带来重大损失,因此快速准确地识别电力设备故障具有重要意义.红外图像特征对具有发热特征的电力设备缺陷具有较好的表达能力.使用基于深度学习算法的缺陷目标识别时,借助CNN网络可以提高缺陷故障特征的学习和提取能力,从而具有更好的泛化性能.据此,研究提出了基于改进VGG模型的故障诊断识别算法,算法通过优化全连接层,减少网络的计算量,同时将BCBAM注意力机制嵌套到网络模型中,从而提高算法故障诊断识别准确率.实验数据表明,该模型具有准确的故障识别能力,在准确率评价指标上优于Faster-RCNN、Resnet50以及传统VGG16等模型,从而验证了算法诊断识别故障的准确度.
关键词
故障识别
深度学习网络
轻量化
vgg
模型
注意力机制
Keywords
fault identification
deep learning network
lightweight
vgg
model
attention mechanism
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于轻量化VGG16和BCBAM的电力设备故障红外图像诊断识别
于晓
庄光耀
《河南科技学院学报(自然科学版)》
2023
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部