The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute.The experimental and numerical simulation methods were adopted in this work to s...The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute.The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions.The results show that the pressure distribution in volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream,which results in the non-axisymmetric flow inside the compressor.The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition,its effect on the upstream flow field is also stronger.Additionally,the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet.In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different.Meanwhile,the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow.The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel,while the low static pressure zone of the volute corresponds to the increase of the mass flow.In small flow condition,the mass flow difference in the blade channel is bigger than that in the large flow condition.展开更多
The present work is concerned with the analysis of an axi-symmetric flow of blood through coaxial tubes where the outer tube has an axially symmetric mild stenosis and the inner tube has a balloon which is axi-symmetr...The present work is concerned with the analysis of an axi-symmetric flow of blood through coaxial tubes where the outer tube has an axially symmetric mild stenosis and the inner tube has a balloon which is axi-symmetric in nature. The mild stenosis approximation is used to solve the present problem. The effect of the volume fraction density of the particles, the maximum height attained by the balloon, the radius of the inner tube, which keeps the balloon in position k, and the axial displacement of the balloon have been studied. Flow parameters such as the resistive impedance, the wall shear stress distribution in the stenotic region and its magnitude at the stenosis throat have been computed for different parameters. It is observed that the resistance to flow decreases with increasing values of the axial displacement of the balloon, while the resistance to flow increases with the volume fraction density of the particles, the radius of the inner tube, which keeps the balloon in position k, and the maximum height attained by the balloon. The wall shear stress distribution in the stenotic region possesses a character similar to the resistance to flow with respect to any parameter.展开更多
基金sponsored by the National Natural Science Foundation of China(No.51276017)
文摘The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute.The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions.The results show that the pressure distribution in volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream,which results in the non-axisymmetric flow inside the compressor.The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition,its effect on the upstream flow field is also stronger.Additionally,the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet.In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different.Meanwhile,the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow.The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel,while the low static pressure zone of the volute corresponds to the increase of the mass flow.In small flow condition,the mass flow difference in the blade channel is bigger than that in the large flow condition.
文摘The present work is concerned with the analysis of an axi-symmetric flow of blood through coaxial tubes where the outer tube has an axially symmetric mild stenosis and the inner tube has a balloon which is axi-symmetric in nature. The mild stenosis approximation is used to solve the present problem. The effect of the volume fraction density of the particles, the maximum height attained by the balloon, the radius of the inner tube, which keeps the balloon in position k, and the axial displacement of the balloon have been studied. Flow parameters such as the resistive impedance, the wall shear stress distribution in the stenotic region and its magnitude at the stenosis throat have been computed for different parameters. It is observed that the resistance to flow decreases with increasing values of the axial displacement of the balloon, while the resistance to flow increases with the volume fraction density of the particles, the radius of the inner tube, which keeps the balloon in position k, and the maximum height attained by the balloon. The wall shear stress distribution in the stenotic region possesses a character similar to the resistance to flow with respect to any parameter.