利用有限元软件ANSYS建立热机直接耦合作用下的轮轨滑动接触热弹塑性有限元模型。采用与温度相关的变摩擦因数和材料参数,运用热机直接耦合法,考虑轮轨间非稳态热传导及轮轨与环境间热对流和热辐射的影响,考虑扣件系统对轮轨接触的影响...利用有限元软件ANSYS建立热机直接耦合作用下的轮轨滑动接触热弹塑性有限元模型。采用与温度相关的变摩擦因数和材料参数,运用热机直接耦合法,考虑轮轨间非稳态热传导及轮轨与环境间热对流和热辐射的影响,考虑扣件系统对轮轨接触的影响,分析了不同扣件垂向刚度和扣件间距对钢轨受力和变形的影响。结果表明:轮轨接触斑附近钢轨的最大等效应力和弹性应变出现在钢轨接触表面上;在车轮滑过区域,钢轨最大等效应力和弹性应变发生在钢轨次表面上;钢轨的等效应力、最大变形和车轮垂向加速度在扣件垂向刚度为50 k N/mm时最小;从钢轨的应力、应变、变形和温升方面考虑,扣件间距在0.6~0.725 m间取值均较合理,车轮垂向加速度在扣件间距为0.6 m时最小。展开更多
文摘利用有限元软件ANSYS建立热机直接耦合作用下的轮轨滑动接触热弹塑性有限元模型。采用与温度相关的变摩擦因数和材料参数,运用热机直接耦合法,考虑轮轨间非稳态热传导及轮轨与环境间热对流和热辐射的影响,考虑扣件系统对轮轨接触的影响,分析了不同扣件垂向刚度和扣件间距对钢轨受力和变形的影响。结果表明:轮轨接触斑附近钢轨的最大等效应力和弹性应变出现在钢轨接触表面上;在车轮滑过区域,钢轨最大等效应力和弹性应变发生在钢轨次表面上;钢轨的等效应力、最大变形和车轮垂向加速度在扣件垂向刚度为50 k N/mm时最小;从钢轨的应力、应变、变形和温升方面考虑,扣件间距在0.6~0.725 m间取值均较合理,车轮垂向加速度在扣件间距为0.6 m时最小。