针对轨迹大数据的高效点-轨迹k近邻(point to trajectory k nearest neighbor, P2Tk NN)查询处理需求,提出了一种融合时空剖分和轨迹分段的轨迹组织方法,其核心思想是在对轨迹作时间剖分的基础上,利用离散全球网格系统(discrete global ...针对轨迹大数据的高效点-轨迹k近邻(point to trajectory k nearest neighbor, P2Tk NN)查询处理需求,提出了一种融合时空剖分和轨迹分段的轨迹组织方法,其核心思想是在对轨迹作时间剖分的基础上,利用离散全球网格系统(discrete global grid system, DGGS)在空间上进行再次剖分,从而利用两次剖分得到的时空单元编码来索引落入其中的轨迹片段。在此基础上利用分布式列式存储技术设计了面向轨迹大数据的P2Tk NN查询处理框架,提出了一种顾及轨迹数据空间分布的自适应空间单元搜索算法,即通过分析轨迹数据在给定时间约束下的空间分异特征,动态调整空间单元的搜索步长,从而提升了轨迹稀疏区域的处理效率。针对亿级轨迹的实验结果表明,该方法适用于轨迹大数据的P2Tk NN查询处理,在轨迹稠密与稀疏区域的平均查询响应时间均小于1 s。展开更多
文摘针对轨迹大数据的高效点-轨迹k近邻(point to trajectory k nearest neighbor, P2Tk NN)查询处理需求,提出了一种融合时空剖分和轨迹分段的轨迹组织方法,其核心思想是在对轨迹作时间剖分的基础上,利用离散全球网格系统(discrete global grid system, DGGS)在空间上进行再次剖分,从而利用两次剖分得到的时空单元编码来索引落入其中的轨迹片段。在此基础上利用分布式列式存储技术设计了面向轨迹大数据的P2Tk NN查询处理框架,提出了一种顾及轨迹数据空间分布的自适应空间单元搜索算法,即通过分析轨迹数据在给定时间约束下的空间分异特征,动态调整空间单元的搜索步长,从而提升了轨迹稀疏区域的处理效率。针对亿级轨迹的实验结果表明,该方法适用于轨迹大数据的P2Tk NN查询处理,在轨迹稠密与稀疏区域的平均查询响应时间均小于1 s。
文摘目的随着城市交通拥堵问题的日益严重,建立有效的道路拥堵可视化系统,对智慧城市建设起着重要作用。针对目前基于车辆密度分析法、车速判定法、行驶时间判定法等模式单一,可信度低的问题,提出了一种基于DBSCAN+(density-based spatial clustering of applications with noise plus)的道路拥堵识别可视化方法。方法引入分块并行计算,相较于传统密度算法,可以适应大规模轨迹数据,并行降维聚类速度快。对结果中缓行区类簇判别路段起始点和终止点,通过曲线拟合和拓扑网络纠偏算法,将类簇中轨迹样本点所表征的路段通过地图匹配算法匹配在电子地图中,并结合各类簇中浮动车平均行驶速度判别道路拥堵程度,以颜色深浅程度进行区分可视化。结果实验结果表明,DBSCAN+算法相较现有改进的DBSCAN算法时间复杂度具有优势,由指数降为线性,可适应海量轨迹点。相较主流地图产品,利用城市出租车车载OBD(on board diagnostics)数据进行城区道路拥堵识别,提取非畅通路段总检出长度相较最优产品提高28.9%,拥堵识别命中率高达91%,较主流产品城区拥堵识别平均命中率提高15%。结论在城市路网中,基于DBSCAN+密度聚类和缓行区平均移动速度的多表征道路拥堵识别算法与主流地图产品相比,对拥堵识别率、通勤程度划分更具代表性,可信度更高,可以为道路拥堵识别的实时性提供保障。