期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的路面交通标志识别
被引量:
6
1
作者
任洪梅
《信息通信》
2017年第4期26-27,共2页
高级驾驶辅助系统中,路面交通标志检测和识别是获取安全和预警信息最基本和最具挑战性的任务之一。文章构建一种基于深度学习的路面交通标志识别模型。该模型引入AlexNet网络作为基础网络提取图像全局特征,对全图各个位置的多个尺度特...
高级驾驶辅助系统中,路面交通标志检测和识别是获取安全和预警信息最基本和最具挑战性的任务之一。文章构建一种基于深度学习的路面交通标志识别模型。该模型引入AlexNet网络作为基础网络提取图像全局特征,对全图各个位置的多个尺度特征进行回归分析标志边框和类别,利用非极大值抑制算法消除多余检测框。实验证明该模型可以7类常见的路面交通标志,且具有较高的准确性和鲁棒性。
展开更多
关键词
深度学习
路面
交通标志
检
识别
AlexNet网络
非极大值抑制
下载PDF
职称材料
题名
基于深度学习的路面交通标志识别
被引量:
6
1
作者
任洪梅
机构
合肥工业大学计算机与信息学院
出处
《信息通信》
2017年第4期26-27,共2页
文摘
高级驾驶辅助系统中,路面交通标志检测和识别是获取安全和预警信息最基本和最具挑战性的任务之一。文章构建一种基于深度学习的路面交通标志识别模型。该模型引入AlexNet网络作为基础网络提取图像全局特征,对全图各个位置的多个尺度特征进行回归分析标志边框和类别,利用非极大值抑制算法消除多余检测框。实验证明该模型可以7类常见的路面交通标志,且具有较高的准确性和鲁棒性。
关键词
深度学习
路面
交通标志
检
识别
AlexNet网络
非极大值抑制
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的路面交通标志识别
任洪梅
《信息通信》
2017
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部