期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于自适应超高斯混合模型的语音增强算法 被引量:2
1
作者 赵改华 周彬 张雄伟 《数据采集与处理》 CSCD 北大核心 2014年第2期232-237,共6页
语音信号的频谱结构复杂性决定了其短时谱分布不能用单一的概率密度函数(Probability density function,PDF)准确描述。据此,提出了一种采用超高斯混合模型对语音信号幅度谱建模以实现语音增强的新方法。首先,采用超高斯混合模型对语音... 语音信号的频谱结构复杂性决定了其短时谱分布不能用单一的概率密度函数(Probability density function,PDF)准确描述。据此,提出了一种采用超高斯混合模型对语音信号幅度谱建模以实现语音增强的新方法。首先,采用超高斯混合模型对语音信号幅度谱的先验分布进行建模,相对于传统的单一模型,该模型能更好地描述语音信号的多类特性;然后,在增强过程中自适应更新混合分量的PDF及其权重,从而克服了传统模型难以跟踪语音信号分布动态变化的缺点。仿真结果表明与传统的短时谱估计算法相比,该算法的噪声抑制性能有较大的提升,增强语音的主观感知质量也有明显改善。 展开更多
关键词 语音增强 超高混合模型 自适应
下载PDF
基于超高斯混合模型的语音幅度谱增强算法
2
作者 赵改华 周彬 张雄伟 《通信技术》 2013年第6期137-141,共5页
研究表明超高斯分布更加贴近语音信号的实际分布,然而语音信号很难用单一的概率密度函数准确描述,针对这一情况,提出了一种用超高斯混合模型对语音信号幅度谱建模的新方法,并推导了基于此模型的幅度谱最小均方误差估的估计式。仿真结果... 研究表明超高斯分布更加贴近语音信号的实际分布,然而语音信号很难用单一的概率密度函数准确描述,针对这一情况,提出了一种用超高斯混合模型对语音信号幅度谱建模的新方法,并推导了基于此模型的幅度谱最小均方误差估的估计式。仿真结果表明:与传统的短时谱估计算法相比,该算法不仅能够进一步提高增强语音的信噪比,而且可以有效减小增强语音的失真度,提高增强语音的主观感知质量。 展开更多
关键词 语音增强 超高混合模型 最小均方误差
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部