针对当前图摘要方法压缩率较高,图压缩算法无法直接被用于下游任务分析的问题,提出一种图摘要与图压缩的融合算法,即基于节点相似性分组与图压缩的图摘要算法(GSNSC)。首先,初始化节点为超节点,并根据相似度对超节点分组;其次,将每个组...针对当前图摘要方法压缩率较高,图压缩算法无法直接被用于下游任务分析的问题,提出一种图摘要与图压缩的融合算法,即基于节点相似性分组与图压缩的图摘要算法(GSNSC)。首先,初始化节点为超节点,并根据相似度对超节点分组;其次,将每个组的超节点合并,直到达到指定次数或指定节点数;再次,在超节点之间添加超边和校正边以恢复原始图;最后,对于图压缩部分,判断对每个超节点的邻接边压缩和摘要的代价,并选择二者中代价较小的执行。在Web-NotreDame、Web-Google和Web-Berkstan等6个数据集上进行了图压缩率和图查询实验。实验结果表明,在6个数据集上,与SLUGGER(Scalable Lossless sUmmarization of Graphs with HiERarchy)算法相比,所提算法的压缩率至少降低了23个百分点;与SWeG(Summarization of Web-scale Graphs)算法相比,所提算法的压缩率至少降低了13个百分点;在Web-NotreDame数据集上,所提算法的度误差比SWeG降低了41.6%。以上验证了所提算法具有更好的图压缩率和图查询准确度。展开更多
在图博弈中,Myerson假设只有连通的联盟才能获得完全的效用,而忽略连通联盟的具体结构.1996年,Jackson和Wolinsky提出了"网络情形博弈"的模型,拓展了Myerson的图博弈模型.它是利用值函数代替原来的特征函数以体现不同网络结...在图博弈中,Myerson假设只有连通的联盟才能获得完全的效用,而忽略连通联盟的具体结构.1996年,Jackson和Wolinsky提出了"网络情形博弈"的模型,拓展了Myerson的图博弈模型.它是利用值函数代替原来的特征函数以体现不同网络结构对合作结果的影响.考虑超网络情形博弈,它是网络情形博弈的自然推广,由三元组(N,H,v)所组成,这里v是值函数,用于描述在超网络(N,H)合作结构下的合作收益.2012年,van den Nouweland和Slikker利用四个公理给出了位置值的公理化刻画.通过分支有效性和局部平衡超边贡献性两个公理,给出了超网络博弈中位置值的公理化刻画.作为推论,得到了网络博弈中位置值的新刻画.展开更多
与普通网络相比,超网络具有复杂的元组关系(超边),然而现有的大多数网络表示学习方法并不能捕获元组关系。针对上述问题,提出一种超边约束的异质超网络表示学习方法(HRHC)。首先,引入一种结合团扩展和星型扩展的方法,从而将异质超网络...与普通网络相比,超网络具有复杂的元组关系(超边),然而现有的大多数网络表示学习方法并不能捕获元组关系。针对上述问题,提出一种超边约束的异质超网络表示学习方法(HRHC)。首先,引入一种结合团扩展和星型扩展的方法,从而将异质超网络转换为异质网络;其次,引入感知节点语义相关性的元路径游走方法捕获异质节点之间的语义关系;最后,通过超边约束机制捕获节点之间的元组关系,从而获得高质量的节点表示向量。在3个真实世界的超网络数据集上的实验结果表明,对于链接预测任务,所提方法在drug、GPS和MovieLens数据集上都取得了较好的结果;对于超网络重建任务,当超边重建比率大于0.6时,所提方法在drug数据集上的准确性(ACC)优于次优的Hyper2vec(biased 2nd order random walks in Hyper-networks),同时所提方法在GPS数据集上的ACC超过其他基线方法中次优的基于关联图的超边超边约束的异质超网络表示学习方法(HRHC-关联图)15.6个百分点。展开更多
文摘针对当前图摘要方法压缩率较高,图压缩算法无法直接被用于下游任务分析的问题,提出一种图摘要与图压缩的融合算法,即基于节点相似性分组与图压缩的图摘要算法(GSNSC)。首先,初始化节点为超节点,并根据相似度对超节点分组;其次,将每个组的超节点合并,直到达到指定次数或指定节点数;再次,在超节点之间添加超边和校正边以恢复原始图;最后,对于图压缩部分,判断对每个超节点的邻接边压缩和摘要的代价,并选择二者中代价较小的执行。在Web-NotreDame、Web-Google和Web-Berkstan等6个数据集上进行了图压缩率和图查询实验。实验结果表明,在6个数据集上,与SLUGGER(Scalable Lossless sUmmarization of Graphs with HiERarchy)算法相比,所提算法的压缩率至少降低了23个百分点;与SWeG(Summarization of Web-scale Graphs)算法相比,所提算法的压缩率至少降低了13个百分点;在Web-NotreDame数据集上,所提算法的度误差比SWeG降低了41.6%。以上验证了所提算法具有更好的图压缩率和图查询准确度。
文摘在图博弈中,Myerson假设只有连通的联盟才能获得完全的效用,而忽略连通联盟的具体结构.1996年,Jackson和Wolinsky提出了"网络情形博弈"的模型,拓展了Myerson的图博弈模型.它是利用值函数代替原来的特征函数以体现不同网络结构对合作结果的影响.考虑超网络情形博弈,它是网络情形博弈的自然推广,由三元组(N,H,v)所组成,这里v是值函数,用于描述在超网络(N,H)合作结构下的合作收益.2012年,van den Nouweland和Slikker利用四个公理给出了位置值的公理化刻画.通过分支有效性和局部平衡超边贡献性两个公理,给出了超网络博弈中位置值的公理化刻画.作为推论,得到了网络博弈中位置值的新刻画.
文摘与普通网络相比,超网络具有复杂的元组关系(超边),然而现有的大多数网络表示学习方法并不能捕获元组关系。针对上述问题,提出一种超边约束的异质超网络表示学习方法(HRHC)。首先,引入一种结合团扩展和星型扩展的方法,从而将异质超网络转换为异质网络;其次,引入感知节点语义相关性的元路径游走方法捕获异质节点之间的语义关系;最后,通过超边约束机制捕获节点之间的元组关系,从而获得高质量的节点表示向量。在3个真实世界的超网络数据集上的实验结果表明,对于链接预测任务,所提方法在drug、GPS和MovieLens数据集上都取得了较好的结果;对于超网络重建任务,当超边重建比率大于0.6时,所提方法在drug数据集上的准确性(ACC)优于次优的Hyper2vec(biased 2nd order random walks in Hyper-networks),同时所提方法在GPS数据集上的ACC超过其他基线方法中次优的基于关联图的超边超边约束的异质超网络表示学习方法(HRHC-关联图)15.6个百分点。