期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
自适应的SVM增量算法 被引量:6
1
作者 何丽 韩克平 刘颖 《计算机科学与探索》 CSCD 北大核心 2019年第4期647-656,共10页
支持向量机(support vector machine,SVM)算法因其在小样本训练集上的优势和较好的鲁棒性,被广泛应用于处理分类问题。但是对于增量数据和大规模数据,传统的SVM分类算法不能满足需求,增量学习是解决这些问题的有效方法之一。基于数据分... 支持向量机(support vector machine,SVM)算法因其在小样本训练集上的优势和较好的鲁棒性,被广泛应用于处理分类问题。但是对于增量数据和大规模数据,传统的SVM分类算法不能满足需求,增量学习是解决这些问题的有效方法之一。基于数据分布的结构化描述,提出了一种自适应SVM增量学习算法。该算法根据原样本和新增样本与当前分类超平面之间的几何距离,建立了自适应的增量样本选择模型,该模型能够有效地筛选出参与增量训练的边界样本。为了平衡增量学习的速度和性能,模型分别为新增样本和原模型样本设置了基于空间分布相似性的调整系数。实验结果表明,该算法在加快分类速度的同时提高了模型性能。 展开更多
关键词 支持向量机(SVM) 增量学习 数据分布 超平面距离
下载PDF
一种新的支持向量分类算法ACNN-SVM 被引量:2
2
作者 业巧林 业宁 +2 位作者 张训华 武波 宋爱美 《郑州大学学报(理学版)》 CAS 2008年第3期56-58,共3页
针对NN-SVM算法的不足,提出了一种新的支持向量分类算法——ACNN-SVM.先对训练样本集进行最近邻修剪,用SVM训练得到一个SVM模型,然后,计算最近邻修剪后的训练样本集中样本到超平面的距离,如果距离差大于给定的阈值则将其从最近邻修剪后... 针对NN-SVM算法的不足,提出了一种新的支持向量分类算法——ACNN-SVM.先对训练样本集进行最近邻修剪,用SVM训练得到一个SVM模型,然后,计算最近邻修剪后的训练样本集中样本到超平面的距离,如果距离差大于给定的阈值则将其从最近邻修剪后的训练样本集中删除,最后对再修剪后的样本集用SVM训练得到一个最终的SVM模型.实验表明,ACNN-SVM算法的效果优于NN-SVM算法. 展开更多
关键词 NN-SVM算法 ACNN-SVM算法 超平面距离 阈值
下载PDF
基于不等距超平面距离的模糊支持向量机 被引量:6
3
作者 李村合 姜宇 李帅 《计算机系统应用》 2020年第10期185-191,共7页
随着大数据和人工智能时代的到来,支持向量机已在许多方面成功应用,并成为解决分类问题的常用方法之一.但现实中的许多数据都是不平衡的,令其分类性能大幅降低.本文提出了用不等距超平面距离改进原始的标准模糊支持向量机,向模型中加入... 随着大数据和人工智能时代的到来,支持向量机已在许多方面成功应用,并成为解决分类问题的常用方法之一.但现实中的许多数据都是不平衡的,令其分类性能大幅降低.本文提出了用不等距超平面距离改进原始的标准模糊支持向量机,向模型中加入参数λ控制分类面与样本之间的距离,并通过计算样本距离得到模糊隶属度函数,可以改善样本分布不均和噪声数据令分类准确度下降问题.利用实验验证本文算法的有效性,结果说明本文提出的算法能够有效提高不平衡数据的分类效果. 展开更多
关键词 支持向量机 不平衡数据 不等距超平面距离 隶属度函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部