期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于FPGA的超声信号自适应滤波与特征提取 被引量:13
1
作者 刘素贞 魏建 +2 位作者 张闯 金亮 杨庆新 《电工技术学报》 EI CSCD 北大核心 2020年第13期2870-2878,共9页
针对电磁超声特征信号的非线性、非平稳特性,存在传统降噪丢失成分、特征难以提取的问题,该文提出一种用于电磁超声信号的自适应滤波和经验模态分解(EMD)方法相融合的数据处理算法。首先,对超声信号进行稳定性评估,在此基础上采用自适... 针对电磁超声特征信号的非线性、非平稳特性,存在传统降噪丢失成分、特征难以提取的问题,该文提出一种用于电磁超声信号的自适应滤波和经验模态分解(EMD)方法相融合的数据处理算法。首先,对超声信号进行稳定性评估,在此基础上采用自适应滤波对电磁超声信号进行降噪处理,融入EMD的自适应滤波对特有频率噪声更敏感,利用EMD分解出不同时间尺度下波动时频信息及所包含的噪声频率成分,实现表征提取;然后,对EMD降噪后的超声信号进行重构,可消除频率混叠现象,并基于现场可编程门阵列(FPGA)实现了对电磁超声信号的实时降噪和特征提取,为进一步缺陷识别、缺陷评估便携化奠定了基础。最后,分别对带有微裂纹、塑性损伤的铝板进行实验研究,验证了该方法的有效性。该方法具有信噪比高、可实时提取时频信息和有效信息丢失少等特点,能对铝板中缺陷进行有效识别。 展开更多
关键词 超声特征信号 自适应滤波 经验模态分解 特征提取 FPGA
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部