目的为解决基于深度学习算法在执行胎儿四腔心超声切面图像质量评测时无法准确反映心脏区域中瓣膜与房室间隔及心室心房区域的可见程度问题,提出一种目标检测与两级分割相结合的胎儿四腔心超声切面图像质量评测方法。方法首先利用自行...目的为解决基于深度学习算法在执行胎儿四腔心超声切面图像质量评测时无法准确反映心脏区域中瓣膜与房室间隔及心室心房区域的可见程度问题,提出一种目标检测与两级分割相结合的胎儿四腔心超声切面图像质量评测方法。方法首先利用自行构建的胎儿超声切面数据集训练主流的YOLOv5x(you only look once v5x)模型,实现四腔心区域与胸腔区域的有效定位。当检测到四腔心区域在胸腔区域内时,将其视为感兴趣区域送入训练好的U2-Net模型,进一步分割出包含心房室及瓣膜的部分。然后利用形态学算子去除其外围可能存在的少许心脏外膜区域得到四腔心内区域后,通过直方图修正与最大类间方差法(OTSU)相结合的方法分割出瓣膜连同房室间隔区域,并通过减法操作得到心室心房区域的分割图。最后通过联合胎儿四腔心超声切面图像中瓣膜连同房室间隔与心室心房区域的面积之比、瓣膜与房室间隔区域以及心室心房区域的平均灰度构建评分公式与评分标准,实现胎儿四腔心超声切面图像质量的有效评测。结果在胸腔和四腔心区域的检测任务上的mAP@0.5、mAP@0.5-0.95和召回率分别为99.5%、84.6%和99.9%;在四腔心内部区域分割任务上的灵敏度、特异度和准确度分别为95.0%、95.1%和94.9%;所提质量评测方法在所构建的A、B、C三类评测数据集上分别取得了93.7%、90.3%和99.1%的准确率。结论所提方法的评测结果与医生主观评测结果相近,具有较好的可解释性,拥有良好的实际应用价值。展开更多
文摘目的为解决基于深度学习算法在执行胎儿四腔心超声切面图像质量评测时无法准确反映心脏区域中瓣膜与房室间隔及心室心房区域的可见程度问题,提出一种目标检测与两级分割相结合的胎儿四腔心超声切面图像质量评测方法。方法首先利用自行构建的胎儿超声切面数据集训练主流的YOLOv5x(you only look once v5x)模型,实现四腔心区域与胸腔区域的有效定位。当检测到四腔心区域在胸腔区域内时,将其视为感兴趣区域送入训练好的U2-Net模型,进一步分割出包含心房室及瓣膜的部分。然后利用形态学算子去除其外围可能存在的少许心脏外膜区域得到四腔心内区域后,通过直方图修正与最大类间方差法(OTSU)相结合的方法分割出瓣膜连同房室间隔区域,并通过减法操作得到心室心房区域的分割图。最后通过联合胎儿四腔心超声切面图像中瓣膜连同房室间隔与心室心房区域的面积之比、瓣膜与房室间隔区域以及心室心房区域的平均灰度构建评分公式与评分标准,实现胎儿四腔心超声切面图像质量的有效评测。结果在胸腔和四腔心区域的检测任务上的mAP@0.5、mAP@0.5-0.95和召回率分别为99.5%、84.6%和99.9%;在四腔心内部区域分割任务上的灵敏度、特异度和准确度分别为95.0%、95.1%和94.9%;所提质量评测方法在所构建的A、B、C三类评测数据集上分别取得了93.7%、90.3%和99.1%的准确率。结论所提方法的评测结果与医生主观评测结果相近,具有较好的可解释性,拥有良好的实际应用价值。