为了准确预测水质参数的变化趋势,基于回声状态网络(Echo state networks,ESN)对地表水质预测进行了试验。首先根据ESN的特点和训练步骤对ESN网络的重要参数进行分析;然后采用网格搜索(Grid Search,GS)算法对ESN的储备池规模、谱半径、...为了准确预测水质参数的变化趋势,基于回声状态网络(Echo state networks,ESN)对地表水质预测进行了试验。首先根据ESN的特点和训练步骤对ESN网络的重要参数进行分析;然后采用网格搜索(Grid Search,GS)算法对ESN的储备池规模、谱半径、泄漏率、正则化系数进行寻优;在此基础上,结合福建省某水库的真实监测数据建立GS-ESN水质预测模型,对该水库的溶解氧及高锰酸盐指标进行短期预测。结果表明,GS-ESN水质预测模型的准确性相对于经验调参方法有明显提高。展开更多
文摘为了准确预测水质参数的变化趋势,基于回声状态网络(Echo state networks,ESN)对地表水质预测进行了试验。首先根据ESN的特点和训练步骤对ESN网络的重要参数进行分析;然后采用网格搜索(Grid Search,GS)算法对ESN的储备池规模、谱半径、泄漏率、正则化系数进行寻优;在此基础上,结合福建省某水库的真实监测数据建立GS-ESN水质预测模型,对该水库的溶解氧及高锰酸盐指标进行短期预测。结果表明,GS-ESN水质预测模型的准确性相对于经验调参方法有明显提高。