To resolve the deformation problem for thin-walled aero-parts in the actual production, this paper simulates the effect of the tool-path on the machining accuracy of the thin-walled frame. The frame is shaped in the p...To resolve the deformation problem for thin-walled aero-parts in the actual production, this paper simulates the effect of the tool-path on the machining accuracy of the thin-walled frame. The frame is shaped in the part milling under a given clamping condition by using the three-dimensional finite element method (FEM). Result shows that the sidewall deformation has a big difference if only the tool-path changes. When the tool-path from the outside to the inside is used, the machining deformation is smaller than another three kinds of toolpaths. Simulation results are compared with experimental data, and the correctness of the simulation is verified.Reasonable processing paths can be found by FEM.展开更多
文摘To resolve the deformation problem for thin-walled aero-parts in the actual production, this paper simulates the effect of the tool-path on the machining accuracy of the thin-walled frame. The frame is shaped in the part milling under a given clamping condition by using the three-dimensional finite element method (FEM). Result shows that the sidewall deformation has a big difference if only the tool-path changes. When the tool-path from the outside to the inside is used, the machining deformation is smaller than another three kinds of toolpaths. Simulation results are compared with experimental data, and the correctness of the simulation is verified.Reasonable processing paths can be found by FEM.