An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,c...An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,chemoselectivities and stability in the hydrogenation of nitrobenzene and a variety of niroarenes.The conversion of nitrobenzene can reach 3170 molconv h^–1 molPt^–1 under mild conditions(30°C,5 bar),which is much higher than that of commercial Pt/C catalyst and many reported catalysts under similar reaction conditions.The spatial separation of the active sites for H2 dissociation and hydrogenation should be responsible for the high chemoselectivity,which decreases the contact possibility between the reducible groups of nitroarenes and Pt nanoparticles.The unique surface properties ofα-Fe2O3 play an important role in the reaction process.It provides active sites for hydrogen spillover and reactant adsorption,and ultimately completes the hydrogenation of the nitro group on the catalyst surface.展开更多
The washed and dried porous silica gel was soaked in water glass of moderate viscosity, then mixed with nanometer TiO 2, stired until TiO 2 has been uniformly distributed on the porous silica gel. After dried naturall...The washed and dried porous silica gel was soaked in water glass of moderate viscosity, then mixed with nanometer TiO 2, stired until TiO 2 has been uniformly distributed on the porous silica gel. After dried naturally, it was calcined at 300 ℃ for 1 h to give the immobilized nanometer TiO 2 which was mechanically and chemically stable, and can be reused. Under the illumination of high pressure Hg lamp, the X 3B dye could be degraded almost quantitatively(98%) in a solution containing the photocatalyst, Fe 3+ and H 2O 2 with bubbling of air.展开更多
To investigate how the physicochemical properties and NH3‐selective catalytic reduction(NH3‐SCR)performance of supported ceria‐based catalysts are influenced as a function of support type,a series of CeO2/SiO2,CeO2...To investigate how the physicochemical properties and NH3‐selective catalytic reduction(NH3‐SCR)performance of supported ceria‐based catalysts are influenced as a function of support type,a series of CeO2/SiO2,CeO2/γ‐Al2O3,CeO2/ZrO2,and CeO2/TiO2catalysts were prepared.The physicochemical properties were probed by means of X‐ray diffraction,Raman spectroscopy,Brunauer‐Emmett‐Teller surface area measurements,X‐ray photoelectron spectroscopy,H2‐temperature programmed reduction,and NH3‐temperature programmed desorption.Furthermore,the supported ceria‐based catalysts'catalytic performance and H2O+SO2tolerance were evaluated by the NH3‐SCR model reaction.The results indicate that out of the supported ceria‐based catalysts studied,the CeO2/γ‐Al2O3catalyst exhibits the highest catalytic activity as a result of having a high relative Ce3+/Ce4+ratio,optimum reduction behavior,and the largest total acid site concentration.Finally,the CeO2/γ‐Al2O3catalyst also presents excellent H2O+SO2tolerance during the NH3‐SCR process.展开更多
基金supported by the National Natural Science Foundation of China(21473073,21473074)‘‘13th Five-Year’’ Science and Technology Research of the Education Department of Jilin Province(2016403)+1 种基金the Development Project of Science and Technology of Jilin Province(20170101171JC,20180201068SF)the Open Project of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry(201703)~~
文摘An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,chemoselectivities and stability in the hydrogenation of nitrobenzene and a variety of niroarenes.The conversion of nitrobenzene can reach 3170 molconv h^–1 molPt^–1 under mild conditions(30°C,5 bar),which is much higher than that of commercial Pt/C catalyst and many reported catalysts under similar reaction conditions.The spatial separation of the active sites for H2 dissociation and hydrogenation should be responsible for the high chemoselectivity,which decreases the contact possibility between the reducible groups of nitroarenes and Pt nanoparticles.The unique surface properties ofα-Fe2O3 play an important role in the reaction process.It provides active sites for hydrogen spillover and reactant adsorption,and ultimately completes the hydrogenation of the nitro group on the catalyst surface.
文摘The washed and dried porous silica gel was soaked in water glass of moderate viscosity, then mixed with nanometer TiO 2, stired until TiO 2 has been uniformly distributed on the porous silica gel. After dried naturally, it was calcined at 300 ℃ for 1 h to give the immobilized nanometer TiO 2 which was mechanically and chemically stable, and can be reused. Under the illumination of high pressure Hg lamp, the X 3B dye could be degraded almost quantitatively(98%) in a solution containing the photocatalyst, Fe 3+ and H 2O 2 with bubbling of air.
基金supported by the National Natural Science Foundation of China (21507130)the Chongqing Science and Technology Commission (cstc2016jcyjA 0070,cstc2014pt-gc20002,cstc2014yykfC 20003,cstckjcxljrc13)the Open Project Program of Chongqing Key Laboratory of Ca-talysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)~~
文摘To investigate how the physicochemical properties and NH3‐selective catalytic reduction(NH3‐SCR)performance of supported ceria‐based catalysts are influenced as a function of support type,a series of CeO2/SiO2,CeO2/γ‐Al2O3,CeO2/ZrO2,and CeO2/TiO2catalysts were prepared.The physicochemical properties were probed by means of X‐ray diffraction,Raman spectroscopy,Brunauer‐Emmett‐Teller surface area measurements,X‐ray photoelectron spectroscopy,H2‐temperature programmed reduction,and NH3‐temperature programmed desorption.Furthermore,the supported ceria‐based catalysts'catalytic performance and H2O+SO2tolerance were evaluated by the NH3‐SCR model reaction.The results indicate that out of the supported ceria‐based catalysts studied,the CeO2/γ‐Al2O3catalyst exhibits the highest catalytic activity as a result of having a high relative Ce3+/Ce4+ratio,optimum reduction behavior,and the largest total acid site concentration.Finally,the CeO2/γ‐Al2O3catalyst also presents excellent H2O+SO2tolerance during the NH3‐SCR process.