本文研究了调制白噪声激励下多自由度时滞非线性系统的近似瞬态响应概率密度.首先,由系统当前状态与时滞状态的关系,将原时滞系统近似等效为无时滞系统.然后,应用基于广义谐和函数的随机平均法,导出关于幅值瞬态概率密度的平均Fokker-Pl...本文研究了调制白噪声激励下多自由度时滞非线性系统的近似瞬态响应概率密度.首先,由系统当前状态与时滞状态的关系,将原时滞系统近似等效为无时滞系统.然后,应用基于广义谐和函数的随机平均法,导出关于幅值瞬态概率密度的平均Fokker-Planck-Kolmogorov方程.该方程的解可通过级数式表示,基函数为幅值相关正交函数,系数为时间函数.应用Galerkin方法,系数可由一阶线性微分方程组解得,从而得出幅值响应的瞬态概率密度、状态空间概率密度及幅值统计矩的半解析表达式.最后,以调制白噪声激励下阻尼耦合的二自由度Duffing-van der Pol振子系统为例,验证其求解过程,并讨论不同时滞的影响.展开更多
本文研究了含信号调制噪声和频率波动的小时滞线性分数阶振子的随机共振.利用分数阶Shapiro-Loginov公式和Laplace变换技巧,本文首先推导了系统响应的一阶稳态矩和稳态响应振幅增益(Output Amplitude Gain, OAG)的解析表达式,然后讨论...本文研究了含信号调制噪声和频率波动的小时滞线性分数阶振子的随机共振.利用分数阶Shapiro-Loginov公式和Laplace变换技巧,本文首先推导了系统响应的一阶稳态矩和稳态响应振幅增益(Output Amplitude Gain, OAG)的解析表达式,然后讨论了分数阶、时滞和噪声参数对OAG的影响.结果显示:各参数对OAG的影响均呈现非单调变化的特点,表明系统出现广义随机共振.特别地,分数阶与时滞的协同作用可能诱导随机共振的多样化.这就为在一定范围内调控随机共振提供了可能.展开更多
文摘本文研究了调制白噪声激励下多自由度时滞非线性系统的近似瞬态响应概率密度.首先,由系统当前状态与时滞状态的关系,将原时滞系统近似等效为无时滞系统.然后,应用基于广义谐和函数的随机平均法,导出关于幅值瞬态概率密度的平均Fokker-Planck-Kolmogorov方程.该方程的解可通过级数式表示,基函数为幅值相关正交函数,系数为时间函数.应用Galerkin方法,系数可由一阶线性微分方程组解得,从而得出幅值响应的瞬态概率密度、状态空间概率密度及幅值统计矩的半解析表达式.最后,以调制白噪声激励下阻尼耦合的二自由度Duffing-van der Pol振子系统为例,验证其求解过程,并讨论不同时滞的影响.
文摘本文研究了含信号调制噪声和频率波动的小时滞线性分数阶振子的随机共振.利用分数阶Shapiro-Loginov公式和Laplace变换技巧,本文首先推导了系统响应的一阶稳态矩和稳态响应振幅增益(Output Amplitude Gain, OAG)的解析表达式,然后讨论了分数阶、时滞和噪声参数对OAG的影响.结果显示:各参数对OAG的影响均呈现非单调变化的特点,表明系统出现广义随机共振.特别地,分数阶与时滞的协同作用可能诱导随机共振的多样化.这就为在一定范围内调控随机共振提供了可能.