期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多任务学习与注意力机制的多层次音频特征情感识别研究
1
作者 李磊 朱永同 +2 位作者 杨琦 赵金葳 马柯 《智能计算机与应用》 2024年第1期85-94,101,共11页
传统音频分类任务仅仅是从单层次音频提取特征向量进行分类,即便使用过大的模型,其过多的参数也会造成特征之间的耦合,不符合特征提取“高聚类,低耦合”的原则。由于注意到一些与情绪相关的协变量并没有得到充分利用,本文在模型中加入... 传统音频分类任务仅仅是从单层次音频提取特征向量进行分类,即便使用过大的模型,其过多的参数也会造成特征之间的耦合,不符合特征提取“高聚类,低耦合”的原则。由于注意到一些与情绪相关的协变量并没有得到充分利用,本文在模型中加入性别先验知识;将多层次音频特征分类问题转化为多任务问题进行处理,从而对多层次特征进行解耦再进行分类;针对特征分布的再优化方面设计了一个中心损失模块。通过在IEMOCAP数据集上的实验结果表明,本文提出模型的加权精度(WA)和未加权精度(UA)分别达到了71.94%和73.37%,与原本的多层次模型相比,WA和UA分别提升了1.38%和2.35%。此外,还根据Nlinear和Dlinear算法设计了两个单层次音频特征提取器,在单层次音频特征分类实验中取得了较好的结果。 展开更多
关键词 语音情感分类 MFCC 中心损失 多任务学习 先验信息 Dlinear
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部