Computational fluid dynamics (CFD) combined with detailed chemical kinetics was employed to model the filtration combustion of a mixture of methane/air in a packed bed of uniform 3 mm diameter alumina spherical part...Computational fluid dynamics (CFD) combined with detailed chemical kinetics was employed to model the filtration combustion of a mixture of methane/air in a packed bed of uniform 3 mm diameter alumina spherical particles. The standard k-ε turbulence model and a methane oxidation mechanism with 23 species and 39 elemental reactions were used. Various equivalence ratios (1.47, 1.88, 2.12 and 2.35) were studied. The numerical results showed good agreement with the experimental data. For ultra-rich mixtures, the combustion temperature exceeds the adiabatic value by hundreds of centigrade degrees. Syngas (hydrogen and carbon monoxide) can be obtained up to a mole fraction of 23%. The numerical results also showed that the combination of CFD with detailed chemical kinetics gives good performance for modeling the pseudo-homogeneous flames of methane in porous media.展开更多
基金Supported by the National Natural Science Foundation of China (20307007, 50576081) and the Natural Science Foundation of Zhejiang Province (R 107532), Program for New Century Excellent Talents in University (NCET-07-0761) and a Foundation for the Author of National Excellent Doctoral Dissertation of China (200747).
文摘Computational fluid dynamics (CFD) combined with detailed chemical kinetics was employed to model the filtration combustion of a mixture of methane/air in a packed bed of uniform 3 mm diameter alumina spherical particles. The standard k-ε turbulence model and a methane oxidation mechanism with 23 species and 39 elemental reactions were used. Various equivalence ratios (1.47, 1.88, 2.12 and 2.35) were studied. The numerical results showed good agreement with the experimental data. For ultra-rich mixtures, the combustion temperature exceeds the adiabatic value by hundreds of centigrade degrees. Syngas (hydrogen and carbon monoxide) can be obtained up to a mole fraction of 23%. The numerical results also showed that the combination of CFD with detailed chemical kinetics gives good performance for modeling the pseudo-homogeneous flames of methane in porous media.