The PandaX-Ⅲ experiment will search for neutrinoless double beta decay of 136Xe with high pressure gaseous time projection chambers at the China Jin-Ping underground Laboratory. The tracking feature of gaseous detect...The PandaX-Ⅲ experiment will search for neutrinoless double beta decay of 136Xe with high pressure gaseous time projection chambers at the China Jin-Ping underground Laboratory. The tracking feature of gaseous detectors helps suppress the background level, resulting in the improvement of the detection sensitivity. We study a method based on the convolutional neural networks to discriminate double beta decay signals against the background from high energy gammas generated by 214Bi and 2^208 T1 decays based on detailed Monte Carlo simulation. Using the 2-dimensional projections of recorded tracks on two planes, the method successfully suppresses the background level by a factor larger than 100 with a high signal efficiency. An improvement of 62% on the efficiency ratio of Еs/√Еb is achieved in comparison with the baseline in the PandaX-Ⅲ conceptual design report.展开更多
基金supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0400302)the National Natural Science Foundation of China (Grant Nos. 11505122, and 11775142)supported in part by the Chinese Academy of Sciences Center for Excellence in Particle Physics (CCEPP)
文摘The PandaX-Ⅲ experiment will search for neutrinoless double beta decay of 136Xe with high pressure gaseous time projection chambers at the China Jin-Ping underground Laboratory. The tracking feature of gaseous detectors helps suppress the background level, resulting in the improvement of the detection sensitivity. We study a method based on the convolutional neural networks to discriminate double beta decay signals against the background from high energy gammas generated by 214Bi and 2^208 T1 decays based on detailed Monte Carlo simulation. Using the 2-dimensional projections of recorded tracks on two planes, the method successfully suppresses the background level by a factor larger than 100 with a high signal efficiency. An improvement of 62% on the efficiency ratio of Еs/√Еb is achieved in comparison with the baseline in the PandaX-Ⅲ conceptual design report.