联邦学习(Federated Learning)是为了解决机器学习中以隐私保护为前提的数据碎片化和隔离问题。各客户端节点在本地训练数据,将训练的模型参数信息上传到中央服务器,由参数服务器聚合参数信息以达到共同训练的目的。由于现实环境中,各...联邦学习(Federated Learning)是为了解决机器学习中以隐私保护为前提的数据碎片化和隔离问题。各客户端节点在本地训练数据,将训练的模型参数信息上传到中央服务器,由参数服务器聚合参数信息以达到共同训练的目的。由于现实环境中,各节点数据之间的分布往往不一致,通过分析非独立同分布数据对联邦学习准确率的影响,来证明传统联邦学习方法得到的模型精度较低。因此,采用多样化抽样策略模拟数据倾斜度分布,提出了基于DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类的集群联邦学习算法(DBSCAN Based Cluster Federated Learning,DCFL),解决了联邦学习中不同节点的数据非独立同分布降低了学习准确率的问题。在Mnist和Cifar-10标准数据集上进行了实验,相比传统的联邦学习算法,基于DBSCAN聚类的集群联邦学习算法对模型的准确率有较大的提升。展开更多
为了提高火电厂大数据平台的生产维护安全化、监控管理精细化、经济效益持续化,提出了大数据平台内开发故障诊断预警系统,采用基于自适应力矩估计(adaptive moment estimation,Adam)算法优化二维卷积神经网络方法建模技术融入于大数据...为了提高火电厂大数据平台的生产维护安全化、监控管理精细化、经济效益持续化,提出了大数据平台内开发故障诊断预警系统,采用基于自适应力矩估计(adaptive moment estimation,Adam)算法优化二维卷积神经网络方法建模技术融入于大数据平台中,并结合大数据平台和专家故障预警诊断功能进行测试与应用。首先对故障预警模型进行数理建模及模型训练优化,直至满足模型功能要求,实施模型算法代码与大数据平台的合库部署上线、满足提前发现系统故障的功能,并结合机理分析对故障系统进行细致化分类,最终发现根本的故障原因。实现了火电厂生产过程中各系统运行特性的全周期监控,在系统或设备发生故障前进行预警并推送异常信息,规范化了模型部署在大数据平台后的测试与实施工作,进一步发现模型缺陷,提高模型准确率。展开更多
为研究基于长短期记忆(Long Short-TermMemory,LSTM)网络的语音转文字系统的优化方法,首先说明LSTM在语音转文字任务中的基本原理和架构,其次分析自适应矩估计(Adaptive Moment Estimation,Adam)优化算法的核心机制及其在LSTM网络中的应...为研究基于长短期记忆(Long Short-TermMemory,LSTM)网络的语音转文字系统的优化方法,首先说明LSTM在语音转文字任务中的基本原理和架构,其次分析自适应矩估计(Adaptive Moment Estimation,Adam)优化算法的核心机制及其在LSTM网络中的应用,最后在Mozilla DeepSpeech框架中嵌入基于Adam优化的LSTM模型,并使用THCHS-30数据集进行实验。实验结果表明,基于Adam优化的LSTM模型在词错率和F1分数上均表现出显著的优越性。展开更多
文摘联邦学习(Federated Learning)是为了解决机器学习中以隐私保护为前提的数据碎片化和隔离问题。各客户端节点在本地训练数据,将训练的模型参数信息上传到中央服务器,由参数服务器聚合参数信息以达到共同训练的目的。由于现实环境中,各节点数据之间的分布往往不一致,通过分析非独立同分布数据对联邦学习准确率的影响,来证明传统联邦学习方法得到的模型精度较低。因此,采用多样化抽样策略模拟数据倾斜度分布,提出了基于DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类的集群联邦学习算法(DBSCAN Based Cluster Federated Learning,DCFL),解决了联邦学习中不同节点的数据非独立同分布降低了学习准确率的问题。在Mnist和Cifar-10标准数据集上进行了实验,相比传统的联邦学习算法,基于DBSCAN聚类的集群联邦学习算法对模型的准确率有较大的提升。
文摘为了提高火电厂大数据平台的生产维护安全化、监控管理精细化、经济效益持续化,提出了大数据平台内开发故障诊断预警系统,采用基于自适应力矩估计(adaptive moment estimation,Adam)算法优化二维卷积神经网络方法建模技术融入于大数据平台中,并结合大数据平台和专家故障预警诊断功能进行测试与应用。首先对故障预警模型进行数理建模及模型训练优化,直至满足模型功能要求,实施模型算法代码与大数据平台的合库部署上线、满足提前发现系统故障的功能,并结合机理分析对故障系统进行细致化分类,最终发现根本的故障原因。实现了火电厂生产过程中各系统运行特性的全周期监控,在系统或设备发生故障前进行预警并推送异常信息,规范化了模型部署在大数据平台后的测试与实施工作,进一步发现模型缺陷,提高模型准确率。
文摘为研究基于长短期记忆(Long Short-TermMemory,LSTM)网络的语音转文字系统的优化方法,首先说明LSTM在语音转文字任务中的基本原理和架构,其次分析自适应矩估计(Adaptive Moment Estimation,Adam)优化算法的核心机制及其在LSTM网络中的应用,最后在Mozilla DeepSpeech框架中嵌入基于Adam优化的LSTM模型,并使用THCHS-30数据集进行实验。实验结果表明,基于Adam优化的LSTM模型在词错率和F1分数上均表现出显著的优越性。