期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于深度学习与目标跟踪的苹果检测与视频计数方法 被引量:15
1
作者 高芳芳 武振超 +4 位作者 索睿 周忠贤 李瑞 傅隆生 张昭 《农业工程学报》 EI CAS CSCD 北大核心 2021年第21期217-224,共8页
基于机器视觉技术自动检测苹果树上的果实并进行计数是实现果园产量测量和智慧果园生产管理的关键。该研究基于现代种植模式下的富士苹果视频,提出基于轻量级目标检测网络YOLOv4-tiny和卡尔曼滤波跟踪算法的苹果检测与视频计数方法。使... 基于机器视觉技术自动检测苹果树上的果实并进行计数是实现果园产量测量和智慧果园生产管理的关键。该研究基于现代种植模式下的富士苹果视频,提出基于轻量级目标检测网络YOLOv4-tiny和卡尔曼滤波跟踪算法的苹果检测与视频计数方法。使用YOLOv4-tiny检测视频中的苹果,对检测到的果实采用卡尔曼滤波算法进行预测跟踪,基于欧氏距离和重叠度匹配改进匈牙利算法对跟踪目标进行最优匹配。分别对算法的检测性能、跟踪性能和计数效果进行试验,结果表明:YOLOv4-tiny模型的平均检测精度达到94.47%,在果园视频中的检测准确度达到96.15%;基于改进的计数算法分别达到69.14%和75.60%的多目标跟踪准确度和精度,较改进前算法分别提高了26.86和20.78个百分点;改进后算法的平均计数精度达到81.94%。该研究方法可有效帮助果农掌握园中苹果数量,为现代化苹果园的测产研究提供技术参考,为果园的智慧管理提供科学决策依据。 展开更多
关键词 视频计数 YOLOv4-tiny 卡尔曼滤波器 匈牙利算法 果实匹配
下载PDF
基于目标检测仔猪乳头计数及乳房形态评估方法
2
作者 李熙雅 尹令 +3 位作者 黄文杰 吴珍芳 蔡更元 田绪红 《农业工程学报》 EI CAS CSCD 北大核心 2024年第3期156-164,共9页
母猪乳头数量是生猪选育中重要参考指标之一,也是生猪繁殖表型数据的组成部分。成年母猪其腹部视频较难获取,且容易受污渍干扰,乳头自动点数实现难度较大,人工计数母猪乳头数工作量大、强度高、效率低、容易产生人为误差。鉴于猪仔从出... 母猪乳头数量是生猪选育中重要参考指标之一,也是生猪繁殖表型数据的组成部分。成年母猪其腹部视频较难获取,且容易受污渍干扰,乳头自动点数实现难度较大,人工计数母猪乳头数工作量大、强度高、效率低、容易产生人为误差。鉴于猪仔从出生到成年乳头数量保持一致性,该研究提出了一种基于仔猪腹部视频的深度学习乳头计数及乳房形态评估方法。通过架设在仔猪初生护理平台上的相机拍摄仔猪腹部视频,根据清晰度筛选出细节清晰的帧序列图像集,经过数据预处理再使用改进Pignip-YOLOv5s目标检测网络对仔猪乳头进行自动计数。为提高计数准确率,帧序列图像集的乳头计数使用滑动窗口取众数得到最终计数结果。试验结果表明,改进的Pignip-YOLOv5s平均精度值(mean average precision, mAP)高达0.97,较YOLOv5原模型具备更高的鲁棒性。该研究方案在113段仔猪腹部视频数据集上测试得到仔猪乳头计数方法准确率达90.26%。同时该研究提出仔猪乳房形态评估参数乳头成对数、乳头间距,从而量化仔猪乳头形态表型特征,构建了母猪乳房外在形态指标,可为母猪选育和繁殖工作提供重要的参考依据。 展开更多
关键词 模型 深度学习 视频计数 YOLOv5s 乳头计数 乳房形态评估
下载PDF
基于自纠正NMS-ByteTrack的套袋葡萄估产方法
3
作者 吕佳 张翠萍 +1 位作者 刘琴 李帅军 《农业工程学报》 EI CAS CSCD 北大核心 2023年第13期182-190,共9页
针对套袋后的葡萄体积增加和葡萄叶片表面积大容易出现重叠遮挡,及人工拍摄视频的速度不稳定可能导致套袋葡萄目标丢失的问题,该研究提出一种基于自纠正NMS(non-maximum suppression)-ByteTrack的套袋葡萄估产方法。该方法首先通过目标... 针对套袋后的葡萄体积增加和葡萄叶片表面积大容易出现重叠遮挡,及人工拍摄视频的速度不稳定可能导致套袋葡萄目标丢失的问题,该研究提出一种基于自纠正NMS(non-maximum suppression)-ByteTrack的套袋葡萄估产方法。该方法首先通过目标检测方法YOLOv5s检测视频中的套袋葡萄,将检测阶段的NMS操作后置到追踪阶段,保留因遮挡而被过滤的果实检测框;其次在ByteTrack的基础上加入相机运动补偿和改进的卡尔曼滤波算法,以自动纠正果实预测框的位置并进行追踪;最后提出一种划线计数策略对套袋葡萄自动计数。试验结果表明,该方法的多目标追踪准确率、多目标追踪精度和ID调和平均数分别为64.6%、82.4%和80.8%,相比ByteTrack分别提高了1.7、1.0和4.1个百分点,平均计数精度达到82.8%。因此,基于自纠正NMS-ByteTrack的估产方法能有效解决套袋葡萄的追踪计数问题,实现对套袋葡萄更精确地估产。 展开更多
关键词 图像处理 农业 目标追踪 视频计数 估产方法 套袋葡萄 ByteTrack 卡尔曼滤波器
下载PDF
基于YOLOv3的可变时间窗自校正船只跟踪与计数 被引量:2
4
作者 刘春 栗健 《计算机系统应用》 2021年第11期240-246,共7页
能够自动识别、统计航道上的船只类型与数量,对建设"智慧航道"、水上智能预警、通航辅助决策等具有重要意义.通过使用YOLOv3预训练模型,对船只样本图片进行训练,调参优化得到航道中船只检测模型,然后利用深度学习模型善于进... 能够自动识别、统计航道上的船只类型与数量,对建设"智慧航道"、水上智能预警、通航辅助决策等具有重要意义.通过使用YOLOv3预训练模型,对船只样本图片进行训练,调参优化得到航道中船只检测模型,然后利用深度学习模型善于进行目标特征提取的特点,结合目标HSV颜色直方特征和LBP局部特征来实现目标选择,针对跟踪目标容易出现的漂移和抖动问题,设计校正网络融合使用了基于回归的方向判断和可变时间窗的目标计数方法,较好地实现了水上运动目标的自动检测、跟踪和自校正计数.测试表明本文方法稳定健壮,适合用于自动分析航道视频,提取统计数据. 展开更多
关键词 YOLOv3 船只识别 目标跟踪 自校正 视频计数
下载PDF
无信号交叉口过街行人与司机演化博弈行为研究 被引量:6
5
作者 雷爱国 胡启洲 +1 位作者 李慧慧 林娟娟 《南京理工大学学报》 EI CAS CSCD 北大核心 2020年第6期705-714,共10页
为了缓解无信号交叉口过街行人和司机冲突,对过街行人和司机进行演化博弈分析,研究了博弈参数对博弈双方过街行为的影响。采用人工计数法和视频计数法,统计所选无信号交叉口过街行人的通过率和司机的礼让率,发现司机礼让率仅为51.96%。... 为了缓解无信号交叉口过街行人和司机冲突,对过街行人和司机进行演化博弈分析,研究了博弈参数对博弈双方过街行为的影响。采用人工计数法和视频计数法,统计所选无信号交叉口过街行人的通过率和司机的礼让率,发现司机礼让率仅为51.96%。根据在斑马线前的等待时间将过街行人心理变化情况分为3个阶段,据此构建每个阶段过街行人与司机的博弈矩阵,对每个阶段的均衡点深入分析。MATLAB仿真表明:过街行人和司机演化博弈行为最终有2个演化稳定状态;改变博弈参数的值,可以定向调整博弈双方的演化方向,能有效提高无信号交叉口过街行人安全。 展开更多
关键词 无信号交叉口 过街行人 司机 演化博弈 人工计数 视频计数
下载PDF
基于无人机视频影像的油菜苗检测与计数
6
作者 黄小毛 张维 +3 位作者 邱天 朱耀宗 徐世兴 李文成 《农业工程学报》 EI CAS CSCD 北大核心 2024年第10期147-156,共10页
针对油菜生长早期传统人工苗情调查方法效率低、主观意识强,不能满足大面积或经常性高精度苗期调查作业需求的问题,该研究基于无人机影像及机器学习技术,提出一种油菜苗视频流检测模型及计数方法。通过对YOLO系列基础模型添加多头自注意... 针对油菜生长早期传统人工苗情调查方法效率低、主观意识强,不能满足大面积或经常性高精度苗期调查作业需求的问题,该研究基于无人机影像及机器学习技术,提出一种油菜苗视频流检测模型及计数方法。通过对YOLO系列基础模型添加多头自注意力,用BasicRFB(basic receptive field block)模块替换原有的空间池化结构(spatial pyramid pooling-fast,SPPF)模块,并对Neck部分添加一维卷积及更换下采样方式等,进一步结合DeepSORT(deep simple online and real-time tracking)算法和越线计数技术实现对油菜苗的数量统计。算例测试结果表明,改进后YOLOv5s的交并比阈值0.50的平均精度均值达到93.1%,交并比阈值0.50~0.95的平均精度均值达到了67.5%,明显优于Faster RCNN、SSD和YOLOX等其他经典目标检测算法,交并比阈值0.50的平均精度均值分别高出14.82、26.37和3.3个百分点,交并比阈值0.50~0.95的平均精度均值分别高出25.7、33.9和6.7个百分点。油菜苗计数试验结果表明,离线视频计数时,在合理的种植密度区间内,所提算法的油菜苗计数精度平均达到93.75%,平均计数效率为人工计数的9.54倍;在线实时计数时,在不同天气情况下,计数平台的油菜苗计数精度最大相差1.87个百分点,具有良好的泛化性,满足油菜苗计数实时性要求。 展开更多
关键词 无人机 深度学习 油菜苗 离线视频计数 在线实时计数 YOLO DeepSORT
下载PDF
基于K-SSD-F的东亚飞蝗视频检测与计数方法 被引量:4
7
作者 李林 柏召 +2 位作者 刁磊 唐詹 郭旭超 《农业机械学报》 EI CAS CSCD 北大核心 2021年第S01期261-267,共7页
针对目前国内蝗虫监测主要以人工监测为主、监测效率低且计数不准确的问题,以5龄东亚飞蝗为实验对象,提出了一种蝗虫视频计数方法K-SSD-F算法。该方法可以实时、连续、自动监测蝗虫的数量。首先利用背景分离法中的KNN算法提取视频前后... 针对目前国内蝗虫监测主要以人工监测为主、监测效率低且计数不准确的问题,以5龄东亚飞蝗为实验对象,提出了一种蝗虫视频计数方法K-SSD-F算法。该方法可以实时、连续、自动监测蝗虫的数量。首先利用背景分离法中的KNN算法提取视频前后帧的时空特征;然后通过标注好的数据训练SSD模型,并对视频进行检测,提取视频的静态特征,二者结合以提高计数准确率;最后利用补帧算法识别因姿态变化导致的漏计数的帧。实验结果表明,蝗虫识别准确率为97%,召回率为89%,平均检测精度(mAP)为88.94%,F1值为92.82%,且检测速度达到了19.78 f/s。本文方法具有较好的鲁棒性,可以实现蝗虫的实时和自动计数,其精度优于其他模型,也可为其他种类的昆虫自动识别计数提供理论基础。 展开更多
关键词 东亚飞蝗 视频目标计数 背景分离法 SSD算法 补帧算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部