现有的多视图无监督特征选择方法大多存在以下问题:样本的相似度矩阵、不同视图的权重矩阵和特征的权重矩阵往往是预先定义的,不能有效刻画数据间的真实结构以及反映不同视图和特征的重要性,进而导致不能选出有用的特征。为解决上述问题...现有的多视图无监督特征选择方法大多存在以下问题:样本的相似度矩阵、不同视图的权重矩阵和特征的权重矩阵往往是预先定义的,不能有效刻画数据间的真实结构以及反映不同视图和特征的重要性,进而导致不能选出有用的特征。为解决上述问题,首先,在多视图模糊C均值聚类的基础上进行视图权重和特征权重的自适应学习,以同时实现特征选择并保证聚类性能;然后,在拉普拉斯秩约束下自适应地学习样本的相似度矩阵,并构建一个基于自适应学习的多视图无监督特征选择(ALMUFS)方法;最后,设计一种交替迭代优化算法对目标函数进行求解,并在8个真实数据集上将所提方法与6种无监督特征选择基线方法进行比较。实验结果表明,ALMUFS的聚类精度和F-measure优于其他方法,与自适应协作相似性学习(ACSL)相比,平均提高8.99和11.87个百分点;与ASVM(Adaptive Similarity and View Weight)相比,平均提高11.09和13.21个百分点,验证了所提方法的可行性和有效性。展开更多
文摘现有的多视图无监督特征选择方法大多存在以下问题:样本的相似度矩阵、不同视图的权重矩阵和特征的权重矩阵往往是预先定义的,不能有效刻画数据间的真实结构以及反映不同视图和特征的重要性,进而导致不能选出有用的特征。为解决上述问题,首先,在多视图模糊C均值聚类的基础上进行视图权重和特征权重的自适应学习,以同时实现特征选择并保证聚类性能;然后,在拉普拉斯秩约束下自适应地学习样本的相似度矩阵,并构建一个基于自适应学习的多视图无监督特征选择(ALMUFS)方法;最后,设计一种交替迭代优化算法对目标函数进行求解,并在8个真实数据集上将所提方法与6种无监督特征选择基线方法进行比较。实验结果表明,ALMUFS的聚类精度和F-measure优于其他方法,与自适应协作相似性学习(ACSL)相比,平均提高8.99和11.87个百分点;与ASVM(Adaptive Similarity and View Weight)相比,平均提高11.09和13.21个百分点,验证了所提方法的可行性和有效性。