期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于AP聚类的多特征融合方法 被引量:3
1
作者 郭蕾蕾 俞璐 +1 位作者 段国仑 陶性留 《计算机技术与发展》 2019年第8期47-52,共6页
经典的聚类方法通常只适用于单一特征数据,对于多特征数据,特征融合显得尤为重要。传统的多特征融合方式易造成维数灾难、尺度较小的特征被忽视等问题。对于“视图(特征)不平衡”数据,上述问题显得尤为突出。为此,提出了一种基于成对约... 经典的聚类方法通常只适用于单一特征数据,对于多特征数据,特征融合显得尤为重要。传统的多特征融合方式易造成维数灾难、尺度较小的特征被忽视等问题。对于“视图(特征)不平衡”数据,上述问题显得尤为突出。为此,提出了一种基于成对约束的多特征融合AP聚类算法。该算法用“差特征”数据聚类得到约束信息,利用“好特征”数据得到基础相似度矩阵,再利用成对约束来调整基础相似度矩阵,在新得到的相似度矩阵上进行AP聚类。该特征融合方法中,“好特征”占据主导,“差特征”只是以约束的形式发挥作用,克服了现有特征融合方法中效果差距很大的特征平起平坐的缺点。实验结果表明,相较于单视图聚类、多视图数据直接拼接后再聚类、多视图谱聚类等方法,多特征融合AP聚类算法取得了较好的性能,有效地解决了“视图(特征)不平衡”问题。 展开更多
关键词 AP聚类 特征融合 视图(特征)平衡 成对约束 相似度矩阵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部