期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
决策树中避免过度拟合的方法
被引量:
2
1
作者
王黎明
刘华
《软件导刊》
2006年第10期80-82,共3页
通过学习训练数据集来构造分类树的策略可能无法达到最好的泛化性能。随机噪声和某些决策仅基于少量训练数据的情况都会导致决策树的分类精度下降,并且过度拟合训练数据集。避免过度拟合主要是通过对树的剪枝来实现,包括预剪枝和后剪枝...
通过学习训练数据集来构造分类树的策略可能无法达到最好的泛化性能。随机噪声和某些决策仅基于少量训练数据的情况都会导致决策树的分类精度下降,并且过度拟合训练数据集。避免过度拟合主要是通过对树的剪枝来实现,包括预剪枝和后剪枝。后剪枝方法有很多种,主要从计算复杂性、误差估计和算法理论基础角度分析其中的REP、MEP和规则后剪枝算法。
展开更多
关键词
噪声
过度拟合
误差
后
剪枝
降低误差
剪枝
最小误差
剪枝
规则
后
剪枝
下载PDF
职称材料
题名
决策树中避免过度拟合的方法
被引量:
2
1
作者
王黎明
刘华
机构
武汉理工大学计算机科学与技术学院
出处
《软件导刊》
2006年第10期80-82,共3页
文摘
通过学习训练数据集来构造分类树的策略可能无法达到最好的泛化性能。随机噪声和某些决策仅基于少量训练数据的情况都会导致决策树的分类精度下降,并且过度拟合训练数据集。避免过度拟合主要是通过对树的剪枝来实现,包括预剪枝和后剪枝。后剪枝方法有很多种,主要从计算复杂性、误差估计和算法理论基础角度分析其中的REP、MEP和规则后剪枝算法。
关键词
噪声
过度拟合
误差
后
剪枝
降低误差
剪枝
最小误差
剪枝
规则
后
剪枝
Keywords
noise
over-fitting
post-pruning
分类号
TP311.13 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
决策树中避免过度拟合的方法
王黎明
刘华
《软件导刊》
2006
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部