Biomedical porous Ti-15 Mo alloys were prepared by microwave sintering using ammonium hydrogen carbonate(NH4HCO3) as the space holder agent to adjust the porosity and mechanical properties. The porous Ti-15 Mo alloy...Biomedical porous Ti-15 Mo alloys were prepared by microwave sintering using ammonium hydrogen carbonate(NH4HCO3) as the space holder agent to adjust the porosity and mechanical properties. The porous Ti-15 Mo alloys are dominated by β-Ti phase with a little α-Ti phase, and the proportion of α and β phase has no significant difference as the NH4HCO3 content increases. The porosities and the average pore sizes of the porous Ti-15 Mo alloys increase with increase of the contents of NH4HCO3, while all of the compressive strength, elastic modulus and bending strength decrease. However, the compressive strength, bending strength and the elastic modulus are higher or close to those of natural bone. The surface of the porous Ti-15 Mo alloy was further modified by hydrothermal treatment, after which Na2Ti6O13 layers with needle and flake-like clusters were formed on the outer and inner surface of the porous Ti-15 Mo alloy. The hydrothermally treated porous Ti-15 Mo alloy is completely covered by the Ca-deficient apatite layers after immersed in SBF solution for 14 d, indicating that it possesses high apatiteforming ability and bioactivity. These results demonstrate that the hydrothermally treated microwave sintered porous Ti-15 Mo alloys could be a promising candidate as the bone implant.展开更多
基金supported by the National Natural Science Foundation of China (51101085)the Aeronautical Science Foundation of China (2015ZF56027)+2 种基金the Natural Science Foundation of Jiangxi Province (2016BAB206109)the Science and Technology Support Plan Project of Jiangxi Province (20151BBG70039)the Science and Technology Project of Jiangxi Province Education Department (GJJ150721)
文摘Biomedical porous Ti-15 Mo alloys were prepared by microwave sintering using ammonium hydrogen carbonate(NH4HCO3) as the space holder agent to adjust the porosity and mechanical properties. The porous Ti-15 Mo alloys are dominated by β-Ti phase with a little α-Ti phase, and the proportion of α and β phase has no significant difference as the NH4HCO3 content increases. The porosities and the average pore sizes of the porous Ti-15 Mo alloys increase with increase of the contents of NH4HCO3, while all of the compressive strength, elastic modulus and bending strength decrease. However, the compressive strength, bending strength and the elastic modulus are higher or close to those of natural bone. The surface of the porous Ti-15 Mo alloy was further modified by hydrothermal treatment, after which Na2Ti6O13 layers with needle and flake-like clusters were formed on the outer and inner surface of the porous Ti-15 Mo alloy. The hydrothermally treated porous Ti-15 Mo alloy is completely covered by the Ca-deficient apatite layers after immersed in SBF solution for 14 d, indicating that it possesses high apatiteforming ability and bioactivity. These results demonstrate that the hydrothermally treated microwave sintered porous Ti-15 Mo alloys could be a promising candidate as the bone implant.