The influence of Zr content on corrosion behaviors of the Ni61.5Nb 38.5xZrx(x=1,3,5,7,9 at.%) bulk metallic glasses(BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X...The influence of Zr content on corrosion behaviors of the Ni61.5Nb 38.5xZrx(x=1,3,5,7,9 at.%) bulk metallic glasses(BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy(XPS).It was found that these BMG alloys possess superior corrosion resistance,that is,with large passive region of about 1.5 V and low passive current density(as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7).XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb-and Zr-enriched surface films formed in the aggressive acid solution.The Zr substitution for Nb effectively reduces the Ni content,particularly the metallic state Ni content in the surface films,which depresses the electrical conduction of the surface films and reduces the passive current density,thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs.These alloys may potentially be useful for engineering applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.50825402 and 50731005)the National Basic Research Program of China(Grant No.2011CB606301)
文摘The influence of Zr content on corrosion behaviors of the Ni61.5Nb 38.5xZrx(x=1,3,5,7,9 at.%) bulk metallic glasses(BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy(XPS).It was found that these BMG alloys possess superior corrosion resistance,that is,with large passive region of about 1.5 V and low passive current density(as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7).XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb-and Zr-enriched surface films formed in the aggressive acid solution.The Zr substitution for Nb effectively reduces the Ni content,particularly the metallic state Ni content in the surface films,which depresses the electrical conduction of the surface films and reduces the passive current density,thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs.These alloys may potentially be useful for engineering applications.