物联网无线服务系统(wireless service system,WSS)是以通用的协议标准实现人与物、物与物相连的实时网络交互系统.该系统在设备中嵌入无线传感器节点以实现数据上传和决策下发,但传感器节点的同构性特点使得蠕虫传播问题日益严重.为此...物联网无线服务系统(wireless service system,WSS)是以通用的协议标准实现人与物、物与物相连的实时网络交互系统.该系统在设备中嵌入无线传感器节点以实现数据上传和决策下发,但传感器节点的同构性特点使得蠕虫传播问题日益严重.为此,在对现有蠕虫传播的流行病模型进行分类并总结各类模型特点的基础上,首先提出了具有睡眠状态和隔离状态的流行病模型,定义了系统中节点的状态转换关系;其次,依据节点的射频通信距离,确定了具有实际传染能力的感染节点数量及范围;再次,引入蠕虫与无线服务系统的目标成本函数,给出了基于目标成本值的完全信息动态微分博弈模型;然后,证明了该博弈存在鞍点策略,利用状态变量、协状态变量和汉密尔顿函数求解鞍点策略并设计了保证目标成本值最优的防御策略算法;最后,仿真实现本算法与2种蠕虫防御策略算法,通过各状态节点的变化特点及目标成本值的对比实验进行性能评估.实验结果表明:基于改进流行病模型的最优防御算法在抑制无线服务系统蠕虫传播方面有明显优势.展开更多
In order to take precaution and cure against intemet of vehicles (IOV) worm propagation in expressway, the IOV worm propagation and its corresponding anti-worm strategy were studied in expressway interchange termina...In order to take precaution and cure against intemet of vehicles (IOV) worm propagation in expressway, the IOV worm propagation and its corresponding anti-worm strategy were studied in expressway interchange terminal. According to omnirange driving in expressway interchange terminal and vehicular mobile communication environment, an IOV worm propagation model is constructed; and then according to the dynamic propagation law and destructiveness of IOV worm in this environment, a novel hybrid anti-worm strategy for confrontation is designed. This worm propagation model can factually simulates the IOV worm propagation in this interchange terminal environment; and this hybrid anti-worm strategy can effectively control IOV worm propagation in the environment, moreover, it can reduce the influence on network resource overhead.展开更多
The peer-to-peer(P2P) file-sharing network as a vehicle of disseminating files has become very popular. The appearance of dozens of kinds of passive worms on this network has, however, made it unsecured. This proble...The peer-to-peer(P2P) file-sharing network as a vehicle of disseminating files has become very popular. The appearance of dozens of kinds of passive worms on this network has, however, made it unsecured. This problem has been paid attention and a few of models for passive worm propagation has been presented. Unfortunately, the dynamic properties of this network are ignored in these models. Given the fact, the characteristics of both this network and the passive worm are identified, and on this basis a new mathematical model of passive worm propagation on the P2P network is presented in applying epidemiology in this paper. Note that the dynamic properties of this network are considered in the presented model. The model has been validated by large scale simulation experiments, which demonstrates that the presented model may be used for analyzing the behaviors of passive worms and predicting the trend of their propagation.展开更多
文摘物联网无线服务系统(wireless service system,WSS)是以通用的协议标准实现人与物、物与物相连的实时网络交互系统.该系统在设备中嵌入无线传感器节点以实现数据上传和决策下发,但传感器节点的同构性特点使得蠕虫传播问题日益严重.为此,在对现有蠕虫传播的流行病模型进行分类并总结各类模型特点的基础上,首先提出了具有睡眠状态和隔离状态的流行病模型,定义了系统中节点的状态转换关系;其次,依据节点的射频通信距离,确定了具有实际传染能力的感染节点数量及范围;再次,引入蠕虫与无线服务系统的目标成本函数,给出了基于目标成本值的完全信息动态微分博弈模型;然后,证明了该博弈存在鞍点策略,利用状态变量、协状态变量和汉密尔顿函数求解鞍点策略并设计了保证目标成本值最优的防御策略算法;最后,仿真实现本算法与2种蠕虫防御策略算法,通过各状态节点的变化特点及目标成本值的对比实验进行性能评估.实验结果表明:基于改进流行病模型的最优防御算法在抑制无线服务系统蠕虫传播方面有明显优势.
基金Project(61005008) supported by the National Natural Science Foundation of ChinaProject(JI300D004) supported by the COSTIND Application Foundation of China
文摘In order to take precaution and cure against intemet of vehicles (IOV) worm propagation in expressway, the IOV worm propagation and its corresponding anti-worm strategy were studied in expressway interchange terminal. According to omnirange driving in expressway interchange terminal and vehicular mobile communication environment, an IOV worm propagation model is constructed; and then according to the dynamic propagation law and destructiveness of IOV worm in this environment, a novel hybrid anti-worm strategy for confrontation is designed. This worm propagation model can factually simulates the IOV worm propagation in this interchange terminal environment; and this hybrid anti-worm strategy can effectively control IOV worm propagation in the environment, moreover, it can reduce the influence on network resource overhead.
文摘The peer-to-peer(P2P) file-sharing network as a vehicle of disseminating files has become very popular. The appearance of dozens of kinds of passive worms on this network has, however, made it unsecured. This problem has been paid attention and a few of models for passive worm propagation has been presented. Unfortunately, the dynamic properties of this network are ignored in these models. Given the fact, the characteristics of both this network and the passive worm are identified, and on this basis a new mathematical model of passive worm propagation on the P2P network is presented in applying epidemiology in this paper. Note that the dynamic properties of this network are considered in the presented model. The model has been validated by large scale simulation experiments, which demonstrates that the presented model may be used for analyzing the behaviors of passive worms and predicting the trend of their propagation.