油浸式变压器在运行老化过程中难免会出现各种潜伏性故障,及时正确诊断出变压器的状态至关重要,传统利用基于油中溶解气体分析法(dissolved gas analysis, DGA)数据的三比值法因存在编码不足的缺陷,限制了故障的诊断效果。为此提出了一...油浸式变压器在运行老化过程中难免会出现各种潜伏性故障,及时正确诊断出变压器的状态至关重要,传统利用基于油中溶解气体分析法(dissolved gas analysis, DGA)数据的三比值法因存在编码不足的缺陷,限制了故障的诊断效果。为此提出了一种改进的蝠鲼算法(manta ray foraging optimization, MRFO)优化反向传播(back propagation, BP)网络的故障诊断模型。首先利用逻辑映射与反向学习(opposition based learning, OBL)融合的多阶段算法为MRFO提供初始位置,加强算法全局寻优能力;同时提出利用正交实验法优化蝠鲼算法的3种觅食策略,调节蝠鲼个体的探索与开发,以加强该算法在特定问题上的寻优能力;最后将改进的蝠鲼算法寻得的最优解赋予BP网络的权值和偏置,建立变压器故障诊断系统。利用IEC TC 10故障数据进行了实验,并与其他算法进行了结果对比分析。结果表明,所提方法与BPNN、未改进的MRFO-BP、三比值法的结果相比,分别高出16%、8%、24%,是一种积极有效的方法。展开更多
随着大规模可再生能源对电网渗透率的不断增加,大型风光电站也开始参与到电网的调频当中。首先,建立了功率响应总偏差、调频里程支出最小化的多目标互补控制模型,以解决不同调频资源的动态功率分配问题。为解决该非线性优化问题,采用多...随着大规模可再生能源对电网渗透率的不断增加,大型风光电站也开始参与到电网的调频当中。首先,建立了功率响应总偏差、调频里程支出最小化的多目标互补控制模型,以解决不同调频资源的动态功率分配问题。为解决该非线性优化问题,采用多目标蝠鲼觅食优化算法(multi-objective manta ray foraging optimization,MMRFO)快速地获取高质量的Pareto前沿,以满足电网的实时在线调频需求,提高区域电网的动态响应能力。然后,基于熵权法,设计了灰靶决策法客观地选择不同功率扰动下兼顾运行经济性和电能质量的折中解。最后,基于扩展的两区域负荷频率控制(load frequency control,LFC)模型验证了所提方法的有效性。展开更多
文摘油浸式变压器在运行老化过程中难免会出现各种潜伏性故障,及时正确诊断出变压器的状态至关重要,传统利用基于油中溶解气体分析法(dissolved gas analysis, DGA)数据的三比值法因存在编码不足的缺陷,限制了故障的诊断效果。为此提出了一种改进的蝠鲼算法(manta ray foraging optimization, MRFO)优化反向传播(back propagation, BP)网络的故障诊断模型。首先利用逻辑映射与反向学习(opposition based learning, OBL)融合的多阶段算法为MRFO提供初始位置,加强算法全局寻优能力;同时提出利用正交实验法优化蝠鲼算法的3种觅食策略,调节蝠鲼个体的探索与开发,以加强该算法在特定问题上的寻优能力;最后将改进的蝠鲼算法寻得的最优解赋予BP网络的权值和偏置,建立变压器故障诊断系统。利用IEC TC 10故障数据进行了实验,并与其他算法进行了结果对比分析。结果表明,所提方法与BPNN、未改进的MRFO-BP、三比值法的结果相比,分别高出16%、8%、24%,是一种积极有效的方法。
文摘随着大规模可再生能源对电网渗透率的不断增加,大型风光电站也开始参与到电网的调频当中。首先,建立了功率响应总偏差、调频里程支出最小化的多目标互补控制模型,以解决不同调频资源的动态功率分配问题。为解决该非线性优化问题,采用多目标蝠鲼觅食优化算法(multi-objective manta ray foraging optimization,MMRFO)快速地获取高质量的Pareto前沿,以满足电网的实时在线调频需求,提高区域电网的动态响应能力。然后,基于熵权法,设计了灰靶决策法客观地选择不同功率扰动下兼顾运行经济性和电能质量的折中解。最后,基于扩展的两区域负荷频率控制(load frequency control,LFC)模型验证了所提方法的有效性。