期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLOv3算法的智能采茶机关键技术研究
1
作者 马志艳 李辉 杨光友 《中国农机化学报》 北大核心 2024年第4期199-204,236,共7页
在复杂背景下精确识别茶叶嫩芽,是实现高端茶叶智能化采摘的关键技术之一。为实现高端茶叶机械化精准采摘,设计一台基于视觉的采茶样机,根据蛛式机械手采摘茶叶的路径规划,将机械手末端的移动坐标问题转换成静平台3个电机转角问题。针对... 在复杂背景下精确识别茶叶嫩芽,是实现高端茶叶智能化采摘的关键技术之一。为实现高端茶叶机械化精准采摘,设计一台基于视觉的采茶样机,根据蛛式机械手采摘茶叶的路径规划,将机械手末端的移动坐标问题转换成静平台3个电机转角问题。针对YOLOv3算法进行改进,采用EfficientNet网络替代DarkNet-53网络进行特征提取,并利用目标函数GIOU优化损失函数。试验结果表明:改进的YOLOv3算法在茶叶嫩芽识别方面,其准确率达到86.53%,单张图像平均识别时间为53 ms,相比传统的YOLOv3算法,性能实现明显的提升,可以达到预期目标,满足机器采摘需求。 展开更多
关键词 智能采茶 YOLOv3算法 机械手 机器学习 图像识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部