期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SO-BiLSTM的高速公路交通事故持续时间预测
1
作者
何庆龄
刘静
+1 位作者
李珊
程瑞
《重庆交通大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第10期97-105,共9页
为减少高速公路交通拥堵和事故伤亡程度及财产损失,提高事故持续时间预测结果精度和适用性,基于1362起高速公路交通事故数据,甄选16个高速公路交通事故持续时间影响因素作为特征变量。通过对连续特征变量统计分析和离散特征变量赋值后,...
为减少高速公路交通拥堵和事故伤亡程度及财产损失,提高事故持续时间预测结果精度和适用性,基于1362起高速公路交通事故数据,甄选16个高速公路交通事故持续时间影响因素作为特征变量。通过对连续特征变量统计分析和离散特征变量赋值后,构建基于SO-BiLSTM的高速公路交通事故持续时间预测模型。研究结果表明,事故持续时间大于120 min的路段内平均交通流量、平均车速和车速离差等均值最小,分别为27882 pcu/h、90.4 km/h和18.0 km/h;事故持续时间小于30 min的路段内大型车混入率均值最小,为34.0%;事故持续时间为[60,90)min的肇事者年龄均值最大,为45岁;事故持续时间大于120 min的肇事者驾龄均值最大,为91月。SO-BiLSTM模型的迭代次数和种群规模分别设置为40和30为最优,对应的事故持续时间预测结果MAPE值为8.9%,相较于PSO-Elman、BiLSTM-CNN、GA-BP和LSTM等降低1.7%~7.6%,且提高了事故持续时间大于120 min的预测结果精度。研究结果有助于制定高速公路交通事故疏解管控和应急救援措施,提升高速公路交通安全管理水平。
展开更多
关键词
交通工程
交通安全
高速公路
交通事故持续时间
蛇
群
优化算法
双向长短时神经网络
下载PDF
职称材料
基于WPT-ISO-RELM模型的月径流时间序列预测研究
被引量:
5
2
作者
王应武
白栩嘉
崔东文
《水力发电》
CAS
2024年第3期12-18,38,共8页
为提高月径流时间序列的预测精度,提升基本蛇群优化(SO)算法搜索能力,同时提升正则化极限学习机(RELM)预测性能,提出了小波包变换(WPT)-改进蛇群优化(ISO)算法-RELM预测模型。首先,利用WPT将月径流时间序列分解为低频分量和高频分量;其...
为提高月径流时间序列的预测精度,提升基本蛇群优化(SO)算法搜索能力,同时提升正则化极限学习机(RELM)预测性能,提出了小波包变换(WPT)-改进蛇群优化(ISO)算法-RELM预测模型。首先,利用WPT将月径流时间序列分解为低频分量和高频分量;其次,通过构建8个RELM超参数寻优适应度函数对ISO寻优能力进行检验,并与SO算法、灰狼优化(GWO)算法、变色龙群算法(CSA)、鲸鱼优化算法(WOA)、樽海鞘群体算法(SSA)、侏獴优化算法(DMO)、粒子群优化算法(PSO)的优化结果作对比;最后,建立WPT-ISO-RELM模型,并构建包含WPT-SO-RELM在内的17种模型作对比模型,通过黑河流域莺落峡水文站、讨赖河水文站2个月径流预测实例对各模型进行验证。结果表明:①ISO寻优精度优于SO、GWO、CSA、WOA、SSA、DMO、PSO,通过关键参数的改进,能有效提升ISO的极值寻优能力和平衡能力;②WPT-ISO-RELM模型对莺落峡水文站、讨赖河水文站月径流预测的平均绝对百分比误差分别为0.854%、0.447%,平均绝对误差分别为0.245、0.068 m^(3)/s,纳什效率系数均在0.9999以上,优于其他对比模型,具有更高的预测精度和更好的稳健性;③ISO对于高维和低维问题均具有较好的优化效果,算法寻优能力对提升RELM预测精度十分关键,算法优化性能越强,寻优精度越高,由此获得的RELM超参数越优,所构建的模型预测性能越好。
展开更多
关键词
月径流预测
正则化极限学习机
改进
蛇
群
优化算法
小波包变换
群
体智能
算法
超参数
优化
下载PDF
职称材料
题名
基于SO-BiLSTM的高速公路交通事故持续时间预测
1
作者
何庆龄
刘静
李珊
程瑞
机构
兰州交通大学交通运输学院
桂林电子科技大学广西智慧交通重点实验室
东北林业大学土木与交通学院
出处
《重庆交通大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第10期97-105,共9页
基金
广西自然科学基金项目(2022GXNSFBA035640,2023GXNSFAA026359)
中央高校基本科研业务费专项资金项目(2572022AW62)
广西高校中青年教师科研基础能力提升项目(2022KY0193)。
文摘
为减少高速公路交通拥堵和事故伤亡程度及财产损失,提高事故持续时间预测结果精度和适用性,基于1362起高速公路交通事故数据,甄选16个高速公路交通事故持续时间影响因素作为特征变量。通过对连续特征变量统计分析和离散特征变量赋值后,构建基于SO-BiLSTM的高速公路交通事故持续时间预测模型。研究结果表明,事故持续时间大于120 min的路段内平均交通流量、平均车速和车速离差等均值最小,分别为27882 pcu/h、90.4 km/h和18.0 km/h;事故持续时间小于30 min的路段内大型车混入率均值最小,为34.0%;事故持续时间为[60,90)min的肇事者年龄均值最大,为45岁;事故持续时间大于120 min的肇事者驾龄均值最大,为91月。SO-BiLSTM模型的迭代次数和种群规模分别设置为40和30为最优,对应的事故持续时间预测结果MAPE值为8.9%,相较于PSO-Elman、BiLSTM-CNN、GA-BP和LSTM等降低1.7%~7.6%,且提高了事故持续时间大于120 min的预测结果精度。研究结果有助于制定高速公路交通事故疏解管控和应急救援措施,提升高速公路交通安全管理水平。
关键词
交通工程
交通安全
高速公路
交通事故持续时间
蛇
群
优化算法
双向长短时神经网络
Keywords
traffic engineering
traffic safety
highway
traffic accident duration
snake optimizer
BiLSTM
分类号
U491 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
基于WPT-ISO-RELM模型的月径流时间序列预测研究
被引量:
5
2
作者
王应武
白栩嘉
崔东文
机构
云南省水利水电勘测设计研究院
云南省文山州水务局
出处
《水力发电》
CAS
2024年第3期12-18,38,共8页
基金
国家重点研发计划项目(2019YFC0507500)
国家自然科学基金资助项目(41702278)
中国地质调查局地质调查项目(DD20221758、DD20190326)。
文摘
为提高月径流时间序列的预测精度,提升基本蛇群优化(SO)算法搜索能力,同时提升正则化极限学习机(RELM)预测性能,提出了小波包变换(WPT)-改进蛇群优化(ISO)算法-RELM预测模型。首先,利用WPT将月径流时间序列分解为低频分量和高频分量;其次,通过构建8个RELM超参数寻优适应度函数对ISO寻优能力进行检验,并与SO算法、灰狼优化(GWO)算法、变色龙群算法(CSA)、鲸鱼优化算法(WOA)、樽海鞘群体算法(SSA)、侏獴优化算法(DMO)、粒子群优化算法(PSO)的优化结果作对比;最后,建立WPT-ISO-RELM模型,并构建包含WPT-SO-RELM在内的17种模型作对比模型,通过黑河流域莺落峡水文站、讨赖河水文站2个月径流预测实例对各模型进行验证。结果表明:①ISO寻优精度优于SO、GWO、CSA、WOA、SSA、DMO、PSO,通过关键参数的改进,能有效提升ISO的极值寻优能力和平衡能力;②WPT-ISO-RELM模型对莺落峡水文站、讨赖河水文站月径流预测的平均绝对百分比误差分别为0.854%、0.447%,平均绝对误差分别为0.245、0.068 m^(3)/s,纳什效率系数均在0.9999以上,优于其他对比模型,具有更高的预测精度和更好的稳健性;③ISO对于高维和低维问题均具有较好的优化效果,算法寻优能力对提升RELM预测精度十分关键,算法优化性能越强,寻优精度越高,由此获得的RELM超参数越优,所构建的模型预测性能越好。
关键词
月径流预测
正则化极限学习机
改进
蛇
群
优化算法
小波包变换
群
体智能
算法
超参数
优化
Keywords
monthly runoff prediction
regularized extreme learning machine(RELM)
improved snake optimization algorithm(ISO)
wavelet packet transform(WPT)
swarm intelligence algorithm
hyperparameter optimization
分类号
P338 [天文地球—水文科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SO-BiLSTM的高速公路交通事故持续时间预测
何庆龄
刘静
李珊
程瑞
《重庆交通大学学报(自然科学版)》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
2
基于WPT-ISO-RELM模型的月径流时间序列预测研究
王应武
白栩嘉
崔东文
《水力发电》
CAS
2024
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部