期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于D-DQN强化学习算法的双足机器人智能控制研究
1
作者 李丽霞 陈艳 《计算机测量与控制》 2024年第3期181-187,共7页
针对现有双足机器人智能控制算法存在的轨迹偏差大、效率低等问题,提出了一种基于D-DQN强化学习的控制算法;先分析双足机器人运动中的坐标变换关系和关节连杆补偿过程,然后基于Q值网络实现对复杂运动非线性过程降维处理,采用了Q值网络... 针对现有双足机器人智能控制算法存在的轨迹偏差大、效率低等问题,提出了一种基于D-DQN强化学习的控制算法;先分析双足机器人运动中的坐标变换关系和关节连杆补偿过程,然后基于Q值网络实现对复杂运动非线性过程降维处理,采用了Q值网络权值和辅助权值的双网络权值设计方式,进一步强化DQN网络性能,并以Tanh函数作为神经网络的激活函数,提升DQN网络的数值训练能力;在数据训练和交互中经验回放池发挥出关键的辅助作用,通过将奖励值输入到目标函数中,进一步提升对双足机器人的控制精度,最后通过虚拟约束控制的方式提高双足机器人运动中的稳定性;实验结果显示:在D-DQN强化学习的控制算法,机器人完成第一阶段测试的时间仅为115 s,综合轨迹偏差0.02 m,而且步态切换极限环测试的稳定性良好。 展开更多
关键词 D-DQN 强化学习 双足机器人 智能控制 经验回放池 虚拟约束控制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部