期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于D-DQN强化学习算法的双足机器人智能控制研究
1
作者
李丽霞
陈艳
《计算机测量与控制》
2024年第3期181-187,共7页
针对现有双足机器人智能控制算法存在的轨迹偏差大、效率低等问题,提出了一种基于D-DQN强化学习的控制算法;先分析双足机器人运动中的坐标变换关系和关节连杆补偿过程,然后基于Q值网络实现对复杂运动非线性过程降维处理,采用了Q值网络...
针对现有双足机器人智能控制算法存在的轨迹偏差大、效率低等问题,提出了一种基于D-DQN强化学习的控制算法;先分析双足机器人运动中的坐标变换关系和关节连杆补偿过程,然后基于Q值网络实现对复杂运动非线性过程降维处理,采用了Q值网络权值和辅助权值的双网络权值设计方式,进一步强化DQN网络性能,并以Tanh函数作为神经网络的激活函数,提升DQN网络的数值训练能力;在数据训练和交互中经验回放池发挥出关键的辅助作用,通过将奖励值输入到目标函数中,进一步提升对双足机器人的控制精度,最后通过虚拟约束控制的方式提高双足机器人运动中的稳定性;实验结果显示:在D-DQN强化学习的控制算法,机器人完成第一阶段测试的时间仅为115 s,综合轨迹偏差0.02 m,而且步态切换极限环测试的稳定性良好。
展开更多
关键词
D-DQN
强化学习
双足机器人
智能
控制
经验回放池
虚拟
约束
控制
下载PDF
职称材料
题名
基于D-DQN强化学习算法的双足机器人智能控制研究
1
作者
李丽霞
陈艳
机构
广州华商学院
出处
《计算机测量与控制》
2024年第3期181-187,共7页
基金
2022年度广州华商学院高等教育教学改革项目(HS2022ZLGC71)。
文摘
针对现有双足机器人智能控制算法存在的轨迹偏差大、效率低等问题,提出了一种基于D-DQN强化学习的控制算法;先分析双足机器人运动中的坐标变换关系和关节连杆补偿过程,然后基于Q值网络实现对复杂运动非线性过程降维处理,采用了Q值网络权值和辅助权值的双网络权值设计方式,进一步强化DQN网络性能,并以Tanh函数作为神经网络的激活函数,提升DQN网络的数值训练能力;在数据训练和交互中经验回放池发挥出关键的辅助作用,通过将奖励值输入到目标函数中,进一步提升对双足机器人的控制精度,最后通过虚拟约束控制的方式提高双足机器人运动中的稳定性;实验结果显示:在D-DQN强化学习的控制算法,机器人完成第一阶段测试的时间仅为115 s,综合轨迹偏差0.02 m,而且步态切换极限环测试的稳定性良好。
关键词
D-DQN
强化学习
双足机器人
智能
控制
经验回放池
虚拟
约束
控制
Keywords
D-DQN
reinforcement learning
bipedal robot
intelligent control
experience playback pool
virtual constraint control
分类号
V19 [航空宇航科学与技术—人机与环境工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于D-DQN强化学习算法的双足机器人智能控制研究
李丽霞
陈艳
《计算机测量与控制》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部