Honeycomb seals and shunt injection have been proposed to weaken the blade vibration.Honeycombseals,as well as,smooth seals were tested with different seals' clearances and shrouded blades.Theshunt injection was s...Honeycomb seals and shunt injection have been proposed to weaken the blade vibration.Honeycombseals,as well as,smooth seals were tested with different seals' clearances and shrouded blades.Theshunt injection was sprayed to the blade tip clearance in the reverse direction of the main flow.Experi-mental results showed that both honeycomb seals and shunt injection had the damping effect for blade vi-bration,and the blade vibration magnitude could be reduced by more than 25 % and 17 %,respectively.When the two methods were adopted synchronously,more than 1/3 of the blade vibration could be re-duced.Consequently,adopting honeycomb seal and superinducing proper shunt injection are two usefulways to minimize vibration of the blade from the viewpoints of avoiding blade rupture and improving therotor stability.展开更多
In this paper,we developed a hybrid model for the steam turbines of a utility system,which combines an improved neural network model with the thermodynamic model.Then,a nonlinear programming(NLP) model of the steam tu...In this paper,we developed a hybrid model for the steam turbines of a utility system,which combines an improved neural network model with the thermodynamic model.Then,a nonlinear programming(NLP) model of the steam turbine network is formulated by utilizing the developed steam turbine models to minimize the total steam cost for the whole steam turbine network.Finally,this model is applied to optimize the steam turbine network of an ethylene plant.The obtained results demonstrate that this hybrid model can accurately estimate and evaluate the performance of steam turbines,and the significant cost savings can be made by optimizing the steam turbine network operation at no capital cost.展开更多
Reliable and efficient power generation is a major global issue due to both political and environmental concerns.Nevertheless many critical components,particularly the blades of the low pressure(LP) side of power gene...Reliable and efficient power generation is a major global issue due to both political and environmental concerns.Nevertheless many critical components,particularly the blades of the low pressure(LP) side of power generating steam turbines,are subjected to failure due to severe erosion at the leading edges.Since taking machines off-line for maintenance and removal of damaged blade for repair is extremely expensive,increasing the service life of these critical components can offer significant economic and political benefits.Conventional techniques to increase service life include brazing of an erosion shield at the leading edge of the turbine blades,open arc hardfacing,and cladding with erosion resistant materials using gas tungsten,manual metal or plasma transferred arc welding.We have been investigating for the past eight years the potential of laser cladding to deposit a high quality and erosion resistant protection shield on the leading edge of LP blades.Laser cladding offers unique advantages over the conventional techniques.The project to-date has demonstrated the feasibility of in-situ repair of turbine blades in trials conducted at a power station using a fibre delivered Laserline diode laser and a robot.A company(Hardwear Pty.Ltd.) has been established to commercialise the technology and has delivered two commercial contracts.展开更多
With the analysis on regulating system in 200 MW steam turbine, the necessity of appending the fast-opening function to the original system is set forth and a new type of fast-opening mechanism is devised. The mathema...With the analysis on regulating system in 200 MW steam turbine, the necessity of appending the fast-opening function to the original system is set forth and a new type of fast-opening mechanism is devised. The mathematical model of system is built up. With the use of AMESIM software, the displacement curve of the piston, the force curve of the cartridge valve spool, the pressure curve and the flux curve in the regulation process are obtained based on simulation. The performances of three fast-opening systems composed of cartridge valves with different diameters are compared. Based on the analysis on factors that affect the execution time of fast-opening, the dead zone of the fast-opening system is put forward. To overcome the defect, dif- ferent operation modes are adopted for different zones. The result shows that with the increase of the valve diameter, the regulating time in the dead zone significantly exceeds the fast-opening time in the whole journey. Accordingly, the optimization operation tactic in the dead zone and the qualification conditions are brought forward. The fast-opening system composed of 32 mm cartridge valves is taken as an example with use of the tactic. The simulation result shows that the maximum regulating time is shortened by 509 ms.展开更多
GP algorithm of correlation dimension computation is ameliorated which overcomes the shortage of traditional one. Improved process of GP algorithm takes the influence of temporal correlative pairs of points on correla...GP algorithm of correlation dimension computation is ameliorated which overcomes the shortage of traditional one. Improved process of GP algorithm takes the influence of temporal correlative pairs of points on correlation dimension into account and promotes the computational efficiency prominently. Iterative SVD method is applied to remove the influence of noise on the result of correlation dimension. The faults of steam flow turbulence and oil film disturbance which occur in 600 MW Steam Turbine Generator are analyzed and whose correlation dimensions are computed. More distinct quantitative index than FFT is gained to distinguish two faults and it’s of little importance to apply correlation dimension to study the influence of various factors on steam flow turbulence fault for nonexistence of convergent floor in correlation integral curve, which presents a new way to learn the operational function of large capacity steam turbine generator and carry out comprehensive condition monitoring.展开更多
Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equ...Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equation solver is explored with k-e-kp turbulence model. Furthermore, 3D flow numerical simulation on the last stage stator of the steam turbine is carried out. The results show that a sudden pressure rise on blade suction surface is mainly caused by the droplet growth in condensation flow. The more backward the condensation position is in cascade passage, the less the sudden pressure rise from condensation is, and the larger the nucleation rate is, the maximum under-cooling and the number of droplets per unit volume are. Interaction of condensation wave and shock wave has imposed greater influence on the parameters of the blade cascade outlet.展开更多
Experimental investigations of non-equilibrium spontaneous condensation in transonic steam flow were carded out in linear blade cascade. The linear cascade consists of the stator blades of the last stage of low pressu...Experimental investigations of non-equilibrium spontaneous condensation in transonic steam flow were carded out in linear blade cascade. The linear cascade consists of the stator blades of the last stage of low pressure steam turbine. The applied experimental test section is a part of a small scale steam power plant located at Silesian Uni- versity of Technology in Gliwice. The steam parameters at the test section inlet correspond to the real conditions in low pressure part of 200MWe steam turbine. The losses in the cascade were estimated using measured static pressure and temperature behind the cascade and the total parameters at inlet. The static pressure measurements on the blade surface as well as the Schlieren pictures were used to assess the flow field in linear cascade of steam turbine stator blades.展开更多
Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mec...Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mechanical drive ships are in service, and more are being built. Another attractive alternative is combined gas and steam turbine (COGAS) drive. This approach offers significant advantages over steam and diesel propulsion. This paper presents the case for the COGAS cycle.展开更多
基金the National Natural Science Foundation of China(No.50375013,50675013)the National High Technology Research and Development Progamme of China(No.2007AA04Z422)
文摘Honeycomb seals and shunt injection have been proposed to weaken the blade vibration.Honeycombseals,as well as,smooth seals were tested with different seals' clearances and shrouded blades.Theshunt injection was sprayed to the blade tip clearance in the reverse direction of the main flow.Experi-mental results showed that both honeycomb seals and shunt injection had the damping effect for blade vi-bration,and the blade vibration magnitude could be reduced by more than 25 % and 17 %,respectively.When the two methods were adopted synchronously,more than 1/3 of the blade vibration could be re-duced.Consequently,adopting honeycomb seal and superinducing proper shunt injection are two usefulways to minimize vibration of the blade from the viewpoints of avoiding blade rupture and improving therotor stability.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202),the National Natural Science Foundation of China(21276078,61174118,21206037)the National Science Fund for Outstanding Young Scholars(61222303)
文摘In this paper,we developed a hybrid model for the steam turbines of a utility system,which combines an improved neural network model with the thermodynamic model.Then,a nonlinear programming(NLP) model of the steam turbine network is formulated by utilizing the developed steam turbine models to minimize the total steam cost for the whole steam turbine network.Finally,this model is applied to optimize the steam turbine network of an ethylene plant.The obtained results demonstrate that this hybrid model can accurately estimate and evaluate the performance of steam turbines,and the significant cost savings can be made by optimizing the steam turbine network operation at no capital cost.
文摘Reliable and efficient power generation is a major global issue due to both political and environmental concerns.Nevertheless many critical components,particularly the blades of the low pressure(LP) side of power generating steam turbines,are subjected to failure due to severe erosion at the leading edges.Since taking machines off-line for maintenance and removal of damaged blade for repair is extremely expensive,increasing the service life of these critical components can offer significant economic and political benefits.Conventional techniques to increase service life include brazing of an erosion shield at the leading edge of the turbine blades,open arc hardfacing,and cladding with erosion resistant materials using gas tungsten,manual metal or plasma transferred arc welding.We have been investigating for the past eight years the potential of laser cladding to deposit a high quality and erosion resistant protection shield on the leading edge of LP blades.Laser cladding offers unique advantages over the conventional techniques.The project to-date has demonstrated the feasibility of in-situ repair of turbine blades in trials conducted at a power station using a fibre delivered Laserline diode laser and a robot.A company(Hardwear Pty.Ltd.) has been established to commercialise the technology and has delivered two commercial contracts.
基金Project (No. NCET-04-0545) supported by the "New Century Elitist Supporting Plan" Fund Project of Education Ministry of China
文摘With the analysis on regulating system in 200 MW steam turbine, the necessity of appending the fast-opening function to the original system is set forth and a new type of fast-opening mechanism is devised. The mathematical model of system is built up. With the use of AMESIM software, the displacement curve of the piston, the force curve of the cartridge valve spool, the pressure curve and the flux curve in the regulation process are obtained based on simulation. The performances of three fast-opening systems composed of cartridge valves with different diameters are compared. Based on the analysis on factors that affect the execution time of fast-opening, the dead zone of the fast-opening system is put forward. To overcome the defect, dif- ferent operation modes are adopted for different zones. The result shows that with the increase of the valve diameter, the regulating time in the dead zone significantly exceeds the fast-opening time in the whole journey. Accordingly, the optimization operation tactic in the dead zone and the qualification conditions are brought forward. The fast-opening system composed of 32 mm cartridge valves is taken as an example with use of the tactic. The simulation result shows that the maximum regulating time is shortened by 509 ms.
文摘GP algorithm of correlation dimension computation is ameliorated which overcomes the shortage of traditional one. Improved process of GP algorithm takes the influence of temporal correlative pairs of points on correlation dimension into account and promotes the computational efficiency prominently. Iterative SVD method is applied to remove the influence of noise on the result of correlation dimension. The faults of steam flow turbulence and oil film disturbance which occur in 600 MW Steam Turbine Generator are analyzed and whose correlation dimensions are computed. More distinct quantitative index than FFT is gained to distinguish two faults and it’s of little importance to apply correlation dimension to study the influence of various factors on steam flow turbulence fault for nonexistence of convergent floor in correlation integral curve, which presents a new way to learn the operational function of large capacity steam turbine generator and carry out comprehensive condition monitoring.
文摘Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equation solver is explored with k-e-kp turbulence model. Furthermore, 3D flow numerical simulation on the last stage stator of the steam turbine is carried out. The results show that a sudden pressure rise on blade suction surface is mainly caused by the droplet growth in condensation flow. The more backward the condensation position is in cascade passage, the less the sudden pressure rise from condensation is, and the larger the nucleation rate is, the maximum under-cooling and the number of droplets per unit volume are. Interaction of condensation wave and shock wave has imposed greater influence on the parameters of the blade cascade outlet.
基金supported by the National Science Centre funds within the project with nr.2011/03/B/ST8/06425
文摘Experimental investigations of non-equilibrium spontaneous condensation in transonic steam flow were carded out in linear blade cascade. The linear cascade consists of the stator blades of the last stage of low pressure steam turbine. The applied experimental test section is a part of a small scale steam power plant located at Silesian Uni- versity of Technology in Gliwice. The steam parameters at the test section inlet correspond to the real conditions in low pressure part of 200MWe steam turbine. The losses in the cascade were estimated using measured static pressure and temperature behind the cascade and the total parameters at inlet. The static pressure measurements on the blade surface as well as the Schlieren pictures were used to assess the flow field in linear cascade of steam turbine stator blades.
文摘Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mechanical drive ships are in service, and more are being built. Another attractive alternative is combined gas and steam turbine (COGAS) drive. This approach offers significant advantages over steam and diesel propulsion. This paper presents the case for the COGAS cycle.