为应对源端可再生能源及荷端负荷需求的随机性波动对综合能源生产单元(integratedenergyproductionunit,IEPU)运行调度及容量配置问题带来的挑战,该文提出一种两阶段随机优化方法。首先,在底层运行优化问题中,通过建立各设备模型及约束...为应对源端可再生能源及荷端负荷需求的随机性波动对综合能源生产单元(integratedenergyproductionunit,IEPU)运行调度及容量配置问题带来的挑战,该文提出一种两阶段随机优化方法。首先,在底层运行优化问题中,通过建立各设备模型及约束条件,提出基于混合整数线性规划(mixed integer linear programming,MILP)的最小成本求解方法;其次,利用蒙特卡洛模拟生成多种随机场景,确定系统在给定容量配置条件下的成本期望;最后,在顶层容量配置优化问题中,以系统容量为决策变量,采用遗传算法调用蒙特卡洛模拟及MILP运行优化算法,实现使IEPU系统全生命周期成本最小的最优容量配置。优化结果表明:底层运行优化中储气的接入使弃光量和碳排放量分别减少5.49%和0.35%,顶层计及源荷不确定性的电力设备容量提升20%左右,更加接近实际场景,验证了所提出方法的有效性。结合参数灵敏度分析,可为IEPU系统的规模化设计提供参考。展开更多
文摘电动汽车(Electric Vehicle,EV)出行存在时间、空间上的不确定性,考虑时空分布的EV负荷预测是研究其与电网之间的交互影响、电动汽车充电站选址定容、实现有序充电的重要基础。以电动私家车为研究对象,提出基于出行起讫点矩阵(Origin-Destination Matrix,OD矩阵)考虑时空分布的EV负荷预测方法。首先根据电动汽车充电模式等影响充电负荷的因素,建立充电负荷基础参数的概率模型。其次由实际路网建立其拓扑结构模型,由OD矩阵结合Floyd算法模拟电动汽车最短距离出行轨迹,采用车速—流量关系模型计算用户在既定起讫点时的行驶时间。然后考虑电池荷电状态的连续变化,基于蒙特卡洛方法(Monte Carlo method)建立EV充电负荷预测模型。最后采用所提方法计算包含居民区、商业区和工作区的某市辖区EV充电负荷时空分布。算例计算结果表明,不同功能区域的EV充电负荷在充电时间、充电方式及充电量上具有不同特征,居民区的大部分充电负荷充电需求在19:00至次日05:00,商业区和工作区的充电负荷集中在日间11:00—17:00,同时EV充电负荷加大了配电网的负荷峰值,影响了配电网的安全运行。所提出的EV充电负荷预测方法可为后续有序充电策略及充电站选址定容研究提供基础数据。
文摘为应对源端可再生能源及荷端负荷需求的随机性波动对综合能源生产单元(integratedenergyproductionunit,IEPU)运行调度及容量配置问题带来的挑战,该文提出一种两阶段随机优化方法。首先,在底层运行优化问题中,通过建立各设备模型及约束条件,提出基于混合整数线性规划(mixed integer linear programming,MILP)的最小成本求解方法;其次,利用蒙特卡洛模拟生成多种随机场景,确定系统在给定容量配置条件下的成本期望;最后,在顶层容量配置优化问题中,以系统容量为决策变量,采用遗传算法调用蒙特卡洛模拟及MILP运行优化算法,实现使IEPU系统全生命周期成本最小的最优容量配置。优化结果表明:底层运行优化中储气的接入使弃光量和碳排放量分别减少5.49%和0.35%,顶层计及源荷不确定性的电力设备容量提升20%左右,更加接近实际场景,验证了所提出方法的有效性。结合参数灵敏度分析,可为IEPU系统的规模化设计提供参考。