期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
莱斯校正的NLM算法在扩散加权图像中的应用 被引量:1
1
作者 易三莉 李思洁 +1 位作者 贺建峰 张桂芳 《小型微型计算机系统》 CSCD 北大核心 2019年第2期439-444,共6页
扩散张量成像技术是一种非侵入活体获取脑白质结构的技术,其广泛应用于人体大脑的神经纤维跟踪.扩散张量图像是由扩散加权图像计算得到的,而扩散加权图像对噪声较为敏感,从而影响后续处理.扩散加权图像具有两个特点,一是图像的自相似性... 扩散张量成像技术是一种非侵入活体获取脑白质结构的技术,其广泛应用于人体大脑的神经纤维跟踪.扩散张量图像是由扩散加权图像计算得到的,而扩散加权图像对噪声较为敏感,从而影响后续处理.扩散加权图像具有两个特点,一是图像的自相似性程度高,纹理和结构具有重复出现的特性且细节纹理较多,二是图像中所含噪声为莱斯噪声.基于这两个特点,我们提出了莱斯校正的非局部均值滤波算法.并将此算法应用于扩散加权图像的降噪中.算法首先针对图像中的莱斯噪声进行莱斯校正,然后再对校正后的图像使用非局部均值滤波器对其进行降噪.为了验证本文算法,通过实验将本文算法与传统的降噪算法进行比较.实验结果表明,本文算法能够更有效的减少扩散加权图像中的噪声,更好的保存了图像的纹理细节,提高了数据准确度. 展开更多
关键词 扩散张量成像 扩散加权图像 神经纤维跟踪 莱斯校正 非局部均值滤波
下载PDF
一种在扩散加权图像降噪中的算法
2
作者 易三莉 贺建峰 +1 位作者 邵党国 刘正刚 《数据采集与处理》 CSCD 北大核心 2014年第1期90-94,共5页
扩散加权图像中的噪声为莱斯噪声并且图像本身含有丰富的边界信息,因而要求对DWI图像有效降噪的同时,能够较好地保留图像的边界信息。由于BEMD算法可将图像分解为细节图像及余项图像,其所分解的细节图像包括DWI图像的边界信息以及主噪声... 扩散加权图像中的噪声为莱斯噪声并且图像本身含有丰富的边界信息,因而要求对DWI图像有效降噪的同时,能够较好地保留图像的边界信息。由于BEMD算法可将图像分解为细节图像及余项图像,其所分解的细节图像包括DWI图像的边界信息以及主噪声,而余项图像则描述图像的趋势信息。因此,提出一种将二维经验模态分解算法与改进的维纳滤波器相结合的降噪算法,并将该算法应用于DWI图像的降噪中。通过实验,将所提出的算法与其他算法应用于DWI图像的降噪处理,并通过对结果的分析比较证明所提出的算法能够更有效地对DWI图像进行降噪处理。 展开更多
关键词 改进维纳滤波器 莱斯校正 扩散加权图像 二维经验模态分解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部