期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于YOLOv3的轴表面荧光磁粉缺陷检测
被引量:
1
1
作者
刘硕
卜雄洙
谷世举
《仪表技术》
2021年第3期49-53,共5页
在荧光磁粉缺陷检测中,为快速有效地对金属轴上的点状、线型以及摩擦型缺陷进行分类检测,引入了深度学习技术,并与图像处理技术结合设计了一种改进型金属轴表面缺陷检测系统,克服了传统识别方式人工选定处理区域的局限性。利用基于YOLOv...
在荧光磁粉缺陷检测中,为快速有效地对金属轴上的点状、线型以及摩擦型缺陷进行分类检测,引入了深度学习技术,并与图像处理技术结合设计了一种改进型金属轴表面缺陷检测系统,克服了传统识别方式人工选定处理区域的局限性。利用基于YOLOv3算法的神经网络模型,对CCD相机获取的轴表面图像数据集进行训练和测试,对不同缺陷进行精确目标识别;采用图像处理技术对识别的目标进行缺陷定量分析。实验结果表明:该方法对不同缺陷类型能进行有效识别,在检测精度与检测效率上具有较高的提升。
展开更多
关键词
荧光
磁粉
缺陷
检测
YOLOv3算法
目标识别
图像处理
下载PDF
职称材料
题名
基于YOLOv3的轴表面荧光磁粉缺陷检测
被引量:
1
1
作者
刘硕
卜雄洙
谷世举
机构
南京理工大学机械工程学院
出处
《仪表技术》
2021年第3期49-53,共5页
文摘
在荧光磁粉缺陷检测中,为快速有效地对金属轴上的点状、线型以及摩擦型缺陷进行分类检测,引入了深度学习技术,并与图像处理技术结合设计了一种改进型金属轴表面缺陷检测系统,克服了传统识别方式人工选定处理区域的局限性。利用基于YOLOv3算法的神经网络模型,对CCD相机获取的轴表面图像数据集进行训练和测试,对不同缺陷进行精确目标识别;采用图像处理技术对识别的目标进行缺陷定量分析。实验结果表明:该方法对不同缺陷类型能进行有效识别,在检测精度与检测效率上具有较高的提升。
关键词
荧光
磁粉
缺陷
检测
YOLOv3算法
目标识别
图像处理
Keywords
fluorescence magnetic particle defect detection
YOLOv3 algorithm
target recognition
image processing
分类号
TG115.28 [金属学及工艺—物理冶金]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于YOLOv3的轴表面荧光磁粉缺陷检测
刘硕
卜雄洙
谷世举
《仪表技术》
2021
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部