The structural and functional study of protein is a major topic of current functional genomics. Fluorescence resonance energy transfer (FRET) is one of few tools available for measuring nanometer scale distances and c...The structural and functional study of protein is a major topic of current functional genomics. Fluorescence resonance energy transfer (FRET) is one of few tools available for measuring nanometer scale distances and changes in distances in vivo . FRET is an ideal technology for detection of protein conformation and protein-protein interaction by using fluorescence protein, traditional organic dyes and other dyes as probes. It uses fluorescence protein, traditional organic dyes and other dyes as its probes. The application of FRET in the determination of intracellular events would be helpful for us to understand the structure and function of biology molecules. [展开更多
缓激肽受体是G蛋白偶联受体家族的重要成员之一,它所介导的信号转导对于维持机体内心血管系统动态平衡和炎症方面发挥了重要的作用。近年来,随着荧光共振能量转移(fluorescence resonance energy transfer,FRET)和生物发光共振能量转移(...缓激肽受体是G蛋白偶联受体家族的重要成员之一,它所介导的信号转导对于维持机体内心血管系统动态平衡和炎症方面发挥了重要的作用。近年来,随着荧光共振能量转移(fluorescence resonance energy transfer,FRET)和生物发光共振能量转移(bioluminescence resonance energy trans-fer,BRET)等技术的相继出现,发现缓激肽受体不仅以单体形式存在,还可能以二聚体甚至是高阶寡聚体的形式参与细胞内的病理生理过程。与单体相比,二聚体(或高阶寡聚体)的信号转导和病理功能都产生了相应变化。本文就缓激肽受体及其二聚体所介导的信号途径、生理病理过程及新的研究技术做一简要综述。展开更多
文摘The structural and functional study of protein is a major topic of current functional genomics. Fluorescence resonance energy transfer (FRET) is one of few tools available for measuring nanometer scale distances and changes in distances in vivo . FRET is an ideal technology for detection of protein conformation and protein-protein interaction by using fluorescence protein, traditional organic dyes and other dyes as probes. It uses fluorescence protein, traditional organic dyes and other dyes as its probes. The application of FRET in the determination of intracellular events would be helpful for us to understand the structure and function of biology molecules. [
文摘缓激肽受体是G蛋白偶联受体家族的重要成员之一,它所介导的信号转导对于维持机体内心血管系统动态平衡和炎症方面发挥了重要的作用。近年来,随着荧光共振能量转移(fluorescence resonance energy transfer,FRET)和生物发光共振能量转移(bioluminescence resonance energy trans-fer,BRET)等技术的相继出现,发现缓激肽受体不仅以单体形式存在,还可能以二聚体甚至是高阶寡聚体的形式参与细胞内的病理生理过程。与单体相比,二聚体(或高阶寡聚体)的信号转导和病理功能都产生了相应变化。本文就缓激肽受体及其二聚体所介导的信号途径、生理病理过程及新的研究技术做一简要综述。