期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
蚁群算法在苹果糖度近红外光谱分析波长选择中的应用 被引量:11
1
作者 陈鑫 刘飞 《分析试验室》 CAS CSCD 北大核心 2013年第10期50-54,共5页
针对苹果近红外光谱数据的特点,研究了蚁群算法(ACO)在近红外光谱波长选择中的应用,建立了一种基于串联双通路构建图的波长变量选择模型。首先采集了苹果表面的漫反射近红外光谱,进而采用蚁群优化算法优选出近红外波长的最佳变量,使用... 针对苹果近红外光谱数据的特点,研究了蚁群算法(ACO)在近红外光谱波长选择中的应用,建立了一种基于串联双通路构建图的波长变量选择模型。首先采集了苹果表面的漫反射近红外光谱,进而采用蚁群优化算法优选出近红外波长的最佳变量,使用所选择的近红外光谱波长数据建立苹果糖度预测模型。与GAPLS、siPLS等波长选择方法进行了比较,新模型的变量数减少到580,模型校正均方根误差RMSEC为0.2712,验证均方根误差RMSEP为0.3059。实验结果表明,蚁群算法用于苹果漫反射近红外光谱波长变量的选择,有效地减少了波长的使用,降低了模型复杂度,同时提高模型的预测精度。 展开更多
关键词 苹果近红外光谱 糖度检测 波长变量选择 蚁群算法
原文传递
MIV方法在苹果糖度近红外分析中的应用 被引量:8
2
作者 陈鑫 刘飞 《计算机与应用化学》 CAS CSCD 北大核心 2012年第7期812-816,共5页
针对苹果糖度近红外光谱数据的特点,分析了基于BP神经网络和偏最小二乘PLS的苹果糖度定量预测模型建立方法:,将平均影响值方法:(mean impact value)引入到近红外波长选取的过程中来,并与联合区间偏最小二乘法结合,达到波长优选的目的:... 针对苹果糖度近红外光谱数据的特点,分析了基于BP神经网络和偏最小二乘PLS的苹果糖度定量预测模型建立方法:,将平均影响值方法:(mean impact value)引入到近红外波长选取的过程中来,并与联合区间偏最小二乘法结合,达到波长优选的目的:。首先,利用联合区间偏最小二乘算法,筛选出与苹果的糖度相关度较大的光谱波长数据,再利用PLS-BP方法:建立预测模型。在此模型基础上,使用平均影响值方法:,对参与建模的每个波长数据进行评价,选取影响值最大的一系列波长点,重新建立模型。模型变量数为124,校正均方根误差(RMSEC)为0.1740,验证均方根误差(RMSEP)为0.4565。结果:表明,校正均方根误差,利用平均影响值与联合区间偏最小二乘方法:结合,对光谱数据进行波长的筛选,可以降低模型复杂度,同时提高模型预测精度。 展开更多
关键词 苹果近红外光谱 平均影响值(MIV) BP神经网络 联合区间偏最小二乘(siPLS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部