设Sn+1是n+1个顶点的星图,G是任意的p阶连通图.ΨG(i)(n,p)表示把Sn+1的n度点与G的第i(1 i p)个顶点重迭后得到的图;ErG(p+i)(r-1)表示把rG的r-1个分支的第i个顶点依次与Sr的r-1个1度点邻接,同时把剩下的一个图G的第i个顶点与Sr的r-1度...设Sn+1是n+1个顶点的星图,G是任意的p阶连通图.ΨG(i)(n,p)表示把Sn+1的n度点与G的第i(1 i p)个顶点重迭后得到的图;ErG(p+i)(r-1)表示把rG的r-1个分支的第i个顶点依次与Sr的r-1个1度点邻接,同时把剩下的一个图G的第i个顶点与Sr的r-1度点重迭后得到的图.我们通过讨论图簇ErG(p+i)(r-1)∪(r-1)K1的伴随多项式的因式分解,证明了它的补图的色等价图的结构性质.展开更多
文摘设Sn+1是n+1个顶点的星图,G是任意的p阶连通图.ΨG(i)(n,p)表示把Sn+1的n度点与G的第i(1 i p)个顶点重迭后得到的图;ErG(p+i)(r-1)表示把rG的r-1个分支的第i个顶点依次与Sr的r-1个1度点邻接,同时把剩下的一个图G的第i个顶点与Sr的r-1度点重迭后得到的图.我们通过讨论图簇ErG(p+i)(r-1)∪(r-1)K1的伴随多项式的因式分解,证明了它的补图的色等价图的结构性质.