期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多输出最小二乘支持向量回归建模的自适应非线性预测控制及应用 被引量:18
1
作者 戴鹏 周平 +1 位作者 梁延灼 柴天佑 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第1期43-52,共10页
提出一种可有效提高常规预测控制方法控制性能与计算效率的数据驱动自适应非线性模型预测控制方法.首先,为了提高多输出非线性系统最小二乘支持向量回归(least squares support vector regression, LS–SVR)建模的精度,考虑各维输出间... 提出一种可有效提高常规预测控制方法控制性能与计算效率的数据驱动自适应非线性模型预测控制方法.首先,为了提高多输出非线性系统最小二乘支持向量回归(least squares support vector regression, LS–SVR)建模的精度,考虑各维输出间的耦合关系,采用在目标函数中加入样本整体拟合误差项,实现多输出LS–SVR(multi-output LS–SVR,M–LS–SVR)预测建模,同时采用粒子群算法优化模型参数;其次,针对动态过程建模的模型失配问题以及由于M–LS–SVR模型复杂导致传统智能算法求解预测控制律缓慢的问题,提出自适应非线性模型预测控制策略,包括两个非线性优化层:第1层采用梯度下降算法实时优化模型和实际过程输出的偏差,以自适应调节模型参数;第2层采用具有全局收敛性和超线性收敛速度序列二次规划(sequential quadratic programming, SQP)算法设计非线性预测控制器,以加速预测控制律的求解速度. Benchmark仿真实例及在高炉炼铁过程的数据试验表明:所提基于M–LS–SVR预测建模的自适应非线性模型预测控制具有较快的求解速度、较好的设定值跟踪和干扰抑制性能以及较强的鲁棒性. 展开更多
关键词 多输入多输出非线性系统 多输出最小二乘支持向量回归机 适应非线性预测控制 序列二次规划算法
下载PDF
基于混合集成建模的硅单晶直径自适应非线性预测控制 被引量:11
2
作者 任俊超 刘丁 万银 《自动化学报》 EI CSCD 北大核心 2020年第5期1004-1016,共13页
大尺寸、电子级直拉硅单晶生长过程中物理变化复杂、多场多相耦合、模型不确定且存在大滞后和非线性等特性,因此如何实现硅单晶直径控制是一个具有理论意义和实际价值的问题.本文结合工程实际提出一种基于混合集成建模的晶体直径自适应... 大尺寸、电子级直拉硅单晶生长过程中物理变化复杂、多场多相耦合、模型不确定且存在大滞后和非线性等特性,因此如何实现硅单晶直径控制是一个具有理论意义和实际价值的问题.本文结合工程实际提出一种基于混合集成建模的晶体直径自适应非线性预测控制方法.首先,为了准确辨识晶体直径模型,提出基于互相关函数的时滞优化估计方法和基于Lipschitz商准则与模型拟合优度的模型阶次辨识方法;其次,基于"分而治之"原理构建晶体直径混合集成模型.其中,采用小波包分解(Wavelet packet decomposition,WPD)方法将原始数据分解成若干个子序列,以减少其非平稳性和随机噪声.极限学习机(Extreme learning machine,ELM)和长短时记忆网络(Long-short-term memory networks,LSTM)分别建立近似(低频)子序列和细节(高频)子序列的预测模型,最终晶体直径预测输出由各子序列的预测结果汇总而成;然后,针对晶体直径混合集成模型失配问题以及目标函数难以求解问题,提出一种基于蚁狮优化(Ant lion optimizer,ALO)的自适应非线性预测控制策略.最后,基于工程实验数据仿真分析,验证了所提建模及控制方法的有效性. 展开更多
关键词 直拉硅单晶生长 直径控制 混合集成建模 模型辨识 适应非线性预测控制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部