期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
自适应深层残差3D-CNN高光谱图像快速分类算法 被引量:4
1
作者 肖志云 蒋家旭 倪晨 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第11期2017-2029,共13页
为了实现高光谱图像的快速训练、分类和超参数自适应寻优,提出基于深层残差3D卷积神经网络(3D-CNN)的高光谱图像识别分类算法.由于采用的3D特征提取算法更适合高光谱3D数据结构,使得网络可以快速地从完整的高光谱图像样本中同时提取丰... 为了实现高光谱图像的快速训练、分类和超参数自适应寻优,提出基于深层残差3D卷积神经网络(3D-CNN)的高光谱图像识别分类算法.由于采用的3D特征提取算法更适合高光谱3D数据结构,使得网络可以快速地从完整的高光谱图像样本中同时提取丰富的空间和光谱特征;此外,通过对高光谱图像样本平面空间方向的旋转和翻转操作进行数据增强的方法;以及运用TPE超参数优化算法对设定的超参数选择空间自适应寻优的方法,都可以有效地提高分类准确率.通过在TensorFlow框架下对Pavia University, Indian Pines和KSC等标准高光谱数据集上的实验结果表明,与SSRN等其他算法相比,文中算法在加深网络结构的同时,提高了分类准确率;与人工设定超参数网络相比,以TPE自适应超参数优化算法优化的网络参数数量减少约一半,训练时间缩短约10%. 展开更多
关键词 残差网络 3D卷积神经网络 适应参数优化 高光谱图像分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部