自适应分配技术根据子信道的瞬时估计值动态地分配传输比特数和发送功率,可以优化正交频分复用(OFDM,Orthogonal Frequency Division Multiplex)系统的整体性能。这里讨论了基于容量优化的自适应比特分配算法,基于误比特率优化的最佳功...自适应分配技术根据子信道的瞬时估计值动态地分配传输比特数和发送功率,可以优化正交频分复用(OFDM,Orthogonal Frequency Division Multiplex)系统的整体性能。这里讨论了基于容量优化的自适应比特分配算法,基于误比特率优化的最佳功率分配算法和次佳功率分配算法。仿真结果表明,对不同信道环境下三种算法的特点和性能进行了分析和比较。仿真结果表明,自适应分配技术可以优化系统的容量和误比特率。展开更多
A novel compression method for mechanical vibrating signals,binding with sub-band vector quantization(SVQ) by wavelet packet transformation(WPT) and discrete cosine transformation(DCT) is proposed.Firstly,the vibratin...A novel compression method for mechanical vibrating signals,binding with sub-band vector quantization(SVQ) by wavelet packet transformation(WPT) and discrete cosine transformation(DCT) is proposed.Firstly,the vibrating signal is decomposed into sub-bands by WPT.Then DCT and adaptive bit allocation are done per sub-band and SVQ is performed in each sub-band.It is noted that,after DCT,we only need to code the first components whose numbers are determined by the bits allocated to that sub-band.Through an actual signal,our algorithm is proven to improve the signal-to-noise ratio(SNR) of the reconstructed signal effectively,especially in the situation of lowrate transmission.展开更多
水声信道面临带宽资源有限、环境复杂的问题,为提高水下通信速率,基于水声传感器网络的海洋应用提出自适应通信的需求。传统基于简单信噪比指标的自适应资源分配算法无法准确表述衰落信道的统计特征,利用强化学习和卷积神经网络预测信...水声信道面临带宽资源有限、环境复杂的问题,为提高水下通信速率,基于水声传感器网络的海洋应用提出自适应通信的需求。传统基于简单信噪比指标的自适应资源分配算法无法准确表述衰落信道的统计特征,利用强化学习和卷积神经网络预测信道的方法虽然可以提高一定信道状态信息(channel state information,CSI)的准确性,但这种方法需要长期的观测和大量的训练样本,不符合水声环境的实际情况。对比,构建了一种中继放大转发协作正交频分复用(orthogonal frequency division multiplexing,OFDM)通信的模型,解决了由于节点漂浮导致直接通信传输效率变低的问题,并提出一种在时延反馈CSI中基于OFDM的自适应功率比特分配算法,利用条件概率表征不完美的CSI,调整自适应通信参数,进行遍历容量最大化建模。仿真结果表明,该算法实现功率和比特的联合自适应分配,平均传输速率指标优于直接反馈CSI的功率分配算法,虽然略低于采用马尔可夫链预测信道的方法,但结合算法复杂度来看,所提算法更简单,更适合能量有限的水声传感器网络。展开更多
文摘自适应分配技术根据子信道的瞬时估计值动态地分配传输比特数和发送功率,可以优化正交频分复用(OFDM,Orthogonal Frequency Division Multiplex)系统的整体性能。这里讨论了基于容量优化的自适应比特分配算法,基于误比特率优化的最佳功率分配算法和次佳功率分配算法。仿真结果表明,对不同信道环境下三种算法的特点和性能进行了分析和比较。仿真结果表明,自适应分配技术可以优化系统的容量和误比特率。
基金Supported by the National Natural Science Foundation of China(No.51135001)
文摘A novel compression method for mechanical vibrating signals,binding with sub-band vector quantization(SVQ) by wavelet packet transformation(WPT) and discrete cosine transformation(DCT) is proposed.Firstly,the vibrating signal is decomposed into sub-bands by WPT.Then DCT and adaptive bit allocation are done per sub-band and SVQ is performed in each sub-band.It is noted that,after DCT,we only need to code the first components whose numbers are determined by the bits allocated to that sub-band.Through an actual signal,our algorithm is proven to improve the signal-to-noise ratio(SNR) of the reconstructed signal effectively,especially in the situation of lowrate transmission.
文摘水声信道面临带宽资源有限、环境复杂的问题,为提高水下通信速率,基于水声传感器网络的海洋应用提出自适应通信的需求。传统基于简单信噪比指标的自适应资源分配算法无法准确表述衰落信道的统计特征,利用强化学习和卷积神经网络预测信道的方法虽然可以提高一定信道状态信息(channel state information,CSI)的准确性,但这种方法需要长期的观测和大量的训练样本,不符合水声环境的实际情况。对比,构建了一种中继放大转发协作正交频分复用(orthogonal frequency division multiplexing,OFDM)通信的模型,解决了由于节点漂浮导致直接通信传输效率变低的问题,并提出一种在时延反馈CSI中基于OFDM的自适应功率比特分配算法,利用条件概率表征不完美的CSI,调整自适应通信参数,进行遍历容量最大化建模。仿真结果表明,该算法实现功率和比特的联合自适应分配,平均传输速率指标优于直接反馈CSI的功率分配算法,虽然略低于采用马尔可夫链预测信道的方法,但结合算法复杂度来看,所提算法更简单,更适合能量有限的水声传感器网络。