目的针对传统基于样本块的图像修复算法中仅利用图像的梯度信息和颜色信息来修复破损区域时,容易产生错误填充块的问题,本文在Criminisi算法的基础上,利用结构张量特性,提出了一种改进的基于结构张量的彩色图像修复算法。方法首先利用...目的针对传统基于样本块的图像修复算法中仅利用图像的梯度信息和颜色信息来修复破损区域时,容易产生错误填充块的问题,本文在Criminisi算法的基础上,利用结构张量特性,提出了一种改进的基于结构张量的彩色图像修复算法。方法首先利用结构张量的特征值定义新的数据项,以确保图像的结构信息能够更加准确地传播;然后利用该数据项构成新的优先权函数,使得图像的填充顺序更加精准;最后利用结构张量的平均相干性来自适应选择样本块大小,以克服结构不连续和错误延伸的缺点;同时在匹配准则中,利用结构张量特征值来增加约束条件,以减少错误匹配率。结果实验结果表明,改进算法的修复效果较理想,在主观视觉上有明显的提升,其修复结果的峰值信噪比(PSNR)和结构相似度(SSIM)都有所提高;与传统Criminisi算法相比,其峰值信噪比提高了1 3 d B。结论本文算法利用结构张量的特性实现了对不同结构特征的彩色破损图像的修复,对复杂的线性结构和纹理区域都有较理想的修复,有效地保持了图像边缘结构的平滑性,而且对大物体的移除和文字去除也有较好的修复效果。展开更多
文摘目的针对传统基于样本块的图像修复算法中仅利用图像的梯度信息和颜色信息来修复破损区域时,容易产生错误填充块的问题,本文在Criminisi算法的基础上,利用结构张量特性,提出了一种改进的基于结构张量的彩色图像修复算法。方法首先利用结构张量的特征值定义新的数据项,以确保图像的结构信息能够更加准确地传播;然后利用该数据项构成新的优先权函数,使得图像的填充顺序更加精准;最后利用结构张量的平均相干性来自适应选择样本块大小,以克服结构不连续和错误延伸的缺点;同时在匹配准则中,利用结构张量特征值来增加约束条件,以减少错误匹配率。结果实验结果表明,改进算法的修复效果较理想,在主观视觉上有明显的提升,其修复结果的峰值信噪比(PSNR)和结构相似度(SSIM)都有所提高;与传统Criminisi算法相比,其峰值信噪比提高了1 3 d B。结论本文算法利用结构张量的特性实现了对不同结构特征的彩色破损图像的修复,对复杂的线性结构和纹理区域都有较理想的修复,有效地保持了图像边缘结构的平滑性,而且对大物体的移除和文字去除也有较好的修复效果。