理论分析表明,Laux提出的DSMC(Direct Simulation of Monte Carlo)方法中的当地时间步长法尽管能够显著缩短流场达到稳定所需的CPU计算时间,提高DSMC程序的运行效率,却存在仿真分子运动和碰撞计算复杂,并需要耗费额外计算机内存的缺憾....理论分析表明,Laux提出的DSMC(Direct Simulation of Monte Carlo)方法中的当地时间步长法尽管能够显著缩短流场达到稳定所需的CPU计算时间,提高DSMC程序的运行效率,却存在仿真分子运动和碰撞计算复杂,并需要耗费额外计算机内存的缺憾.对Laux的方法中仿真分子的运动处理时机提出了改进,并改变了其碰撞抽样方法,从而简化了仿真分子的运动和碰撞计算处理,避免了额外的计算机内存消耗.应用改进后的自适应时间步长法,对圆柱的稀薄气体绕流进行了采用和未采用改进的自适应当地时间步长法的对比计算.结果表明,改进后的自适应当地时间步长法能明显缩短流场达到稳定所需的计算时间,对流场模拟结果产生的影响却非常小.展开更多
针对DSMC(Direct Simulation Monte Carlo)计算中的碰撞对取样和时间推进环节,发展了一类高效处理方法。首先引入碰撞距离的思想,发展了一种自适应碰撞距离的分子碰撞对选取方法;随后在自适应当地时间步长方法和DSMC方法数据结构特点的...针对DSMC(Direct Simulation Monte Carlo)计算中的碰撞对取样和时间推进环节,发展了一类高效处理方法。首先引入碰撞距离的思想,发展了一种自适应碰撞距离的分子碰撞对选取方法;随后在自适应当地时间步长方法和DSMC方法数据结构特点的启发下,以模拟分子为最小时间步长调整单位,发展了一种自适应分子时间步长方法;最后以圆柱外形为例,验证了本文高效处理方法的可行性与正确性。结果表明:发展的高效处理方法能够有效放宽DSMC方法对网格尺寸的限制,显著缩短流场达到稳定所需的计算时间,并且得到满足计算精度要求的结果。展开更多
文摘理论分析表明,Laux提出的DSMC(Direct Simulation of Monte Carlo)方法中的当地时间步长法尽管能够显著缩短流场达到稳定所需的CPU计算时间,提高DSMC程序的运行效率,却存在仿真分子运动和碰撞计算复杂,并需要耗费额外计算机内存的缺憾.对Laux的方法中仿真分子的运动处理时机提出了改进,并改变了其碰撞抽样方法,从而简化了仿真分子的运动和碰撞计算处理,避免了额外的计算机内存消耗.应用改进后的自适应时间步长法,对圆柱的稀薄气体绕流进行了采用和未采用改进的自适应当地时间步长法的对比计算.结果表明,改进后的自适应当地时间步长法能明显缩短流场达到稳定所需的计算时间,对流场模拟结果产生的影响却非常小.
文摘针对DSMC(Direct Simulation Monte Carlo)计算中的碰撞对取样和时间推进环节,发展了一类高效处理方法。首先引入碰撞距离的思想,发展了一种自适应碰撞距离的分子碰撞对选取方法;随后在自适应当地时间步长方法和DSMC方法数据结构特点的启发下,以模拟分子为最小时间步长调整单位,发展了一种自适应分子时间步长方法;最后以圆柱外形为例,验证了本文高效处理方法的可行性与正确性。结果表明:发展的高效处理方法能够有效放宽DSMC方法对网格尺寸的限制,显著缩短流场达到稳定所需的计算时间,并且得到满足计算精度要求的结果。